Browse > Article
http://dx.doi.org/10.4014/jmb.1512.12008

Fumarate Reductase-Producing Enterococci Reduce Methane Production in Rumen Fermentation In Vitro  

Kim, Seon-Ho (Department of Animal Science and Technology, Sunchon National University)
Mamuad, Lovelia L. (Department of Animal Science and Technology, Sunchon National University)
Kim, Dong-Woon (National Institute of Animal Science, Rural Development Administration)
Kim, Soo-Ki (Department of Animal Science and Environment, Konkuk University)
Lee, Sang-Suk (Department of Animal Science and Technology, Sunchon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.3, 2016 , pp. 558-566 More about this Journal
Abstract
Biotic agents such as fumarate-reducing bacteria can be used for controlling methane (CH4) production in the rumen. Fumarate-reducing bacteria convert fumarate to succinate by fumarate reductase, ultimately leading to the production of propionate. Fumarate-reducing bacteria in the genus Enterococcus were isolated from rumen fluid samples from slaughtered Korean native goats. The enterococci were identified as Enterococcus faecalis SROD5 and E. faecium SROD by phylogenetic analyses of 16S rRNA gene sequences. The fumarate reductase activities of the SROD5 and SROD strains were 42.13 and 37.05 mM NADH oxidized/min/mg of cellular nitrogen (N), respectively. Supplementation of rumen fermentation in vitro with the SROD5 and SROD strains produced significantly higher propionate, butyrate, and total volatile fatty acid (VFA) concentrations than controls at 12 h; VFA concentrations tended to increase after 24 h of incubation. The generated CH4 concentration was significantly lower in the SROD5 and SROD treatment groups after 24 h of incubation. These findings indicate that E. faecium SROD has potential as a direct-fed microbial additive for increasing total VFAs while decreasing CH4 production in rumen fermentation in vitro.
Keywords
Enterococcus faecalis SROD5; Enterococcus faecium SROD; fumarate reductase activity; methane; rumen fermentation in vitro;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Asanuma N, Hino T. 2000. Activity and properties of fumarate reductase in ruminal bacteria. J. Gen. Appl. Microbiol. 46: 119-125.   DOI
2 Asanuma N, Iwamoto M, Hino T. 1999. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82: 780-787.   DOI
3 Becquet P. 2003. EU assessment of enterococci as feed additives. Int. J. Food Microbiol. 88: 247-254.   DOI
4 Bergman E. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70: 567-590.   DOI
5 Carro M, Ranilla M. 2003. Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen microorganisms in vitro. Br. J. Nutr. 90: 617-623.   DOI
6 Hattori K, Matsui H. 2008. Diversity of fumarate reducing bacteria in the bovine rumen revealed by culture dependent and independent approaches. Anaerobe 14: 87-93.   DOI
7 Chaucheyras-Durand F, Masséglia S, Fonty G, Forano E. 2010. Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnotobiotically reared lambs. Appl. Environ. Microbiol. 76: 7931-7937.   DOI
8 Demeyer D, Henderickx H. 1967. Competitive inhibition of in vitro methane production by mixed rumen bacteria. Arch. Int. Physiol. Biochim. 75: 157.
9 Harris MA, Reddy CA. 1977. Hydrogenase activity and the H2-fumarate electron transport system in Bacteroides fragilis. J. Bacteriol. 131: 922-928.
10 Herdt TH. 1988. Metabolic diseases of ruminant livestock: fuel homeostasis in the ruminants. Vet. Clin. North Am. Food Anim. Pract. 4: 213-231.   DOI
11 Hungate RE. 1966. The Rumen and Its Microbes. Academic Press, New York.
12 Johnson DE, Ward GM. 1996. Estimates of animal methane emissions. Environ. Monit. Assess. 42: 133-141.   DOI
13 Kang K-H, Yun J-S, Ryu H-W. 2000. Effect of culture conditions on the production of succinate by Enterococcus faecalis RKY1. J. Microbiol. Biotechnol. 10: 1-7.
14 Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.   DOI
15 Kühn I, Iversen A, Burman LG, Olsson-Liljequist B, Franklin A, Finn M, et al. 2003. Comparison of enterococcal populations in animals, humans, and the environment - a European study. Int. J. Food Microbiol. 88: 133-145.   DOI
16 Laukova A, Bomba A, Kmet V. 1990. Enterococcus occurrence and urease activity in rumen content of calves after dietetico-microbial stimulation. Zivocisna Vyroba UVTIZ (CSFR). 35: 1017-1022.
17 Lane D. 1991. 16S/23S rRNA Sequencing, pp. 115-175. John Wiley and Sons, New York.
18 Latham MI, Jayne-Williams DJ. 1978. Streptococci in the Alimentary Tract of the Ruminant, pp. 207-243. Academic Press, London.
19 Lin B, Wang JH, Lu Y, Liang Q, Liu JX. 2013. In vitro rumen fermentation and methane production are influenced by active components of essential oils combined with fumarate. J. Anim. Physiol. Anim. Nutr. 97: 1-9.   DOI
20 Laukova A. 1995. Characteristics of streptococci and enterococci isolated from rumen of mouflons and European bisons. Asian Australas. J. Anim. Sci. 8: 37-41.   DOI
21 Lopez S, Valdes C, Newbold C, Wallace R. 1999. Influence of sodium fumarate addition on rumen fermentation in vitro. Br. J. Nutr. 81: 59-64.
22 Mamuad L, Kim SH, Jeong CD, Choi YJ, Jeon CO, Lee S-S. 2014. Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity. J. Microbiol. 52: 120-128.   DOI
23 Mamuad LL, Kim S, Lee S, Cho K, Jeon C, Lee S-S. 2012. Characterization, metabolites and gas formation of fumarate reducing bacteria isolated from Korean native goat (Capra hircus coreanae). J. Microbiol. 50: 925-931.   DOI
24 Morgavi DP, Forano E, Martin C, Newbold CJ. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4: 1024-1036.   DOI
25 Nyachoti CM, Omogbenigun FO, Rademacher M, Blank G. 2006. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets. J. Anim. Sci. 84: 125-134.   DOI
26 Ryu H-W, Kang K-H, Pan J-G, Chang H-N. 2001. Characteristics and glycerol metabolism of fumarate-reducing Enterococcus faecalis RKY1. Biotechnol. Bioeng. 72: 119-124.   DOI
27 Ørskov ER, McDonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92: 499-503.   DOI
28 Ryu H-W, Wee Y-J. 2001. Characterization of bioconversion of fumarate to succinate by alginate immobilized Enterococcus faecalis RKY1. Appl. Biochem. Biotechnol. 91: 525-535.   DOI
29 Pang DG, Yang HJ, Cao BB, Wu TT, Wang JQ. 2014. The beneficial effect of Enterococcus faecium on the in vitro ruminal fermentation rate and extent of three typical total mixed rations in northern China. Livest. Sci. 167: 154-160.   DOI
30 Ribeiro MD, Pereira JC, Queiroz ACd, Bettero VP, Mantovani HC, Silva CJd. 2009. Influence of intraruminal infusion of propionic acid and forage to concentrate levels on intake, digestibility and rumen characteristics in young bulls. R. Bras. Zootec. 38: 948-955.   DOI
31 Ryu H, Kang K, Yun J. 1999. Bioconversion of fumarate to succinate using glycerol as a carbon source. Appl. Biochem. Biotechnol. 77: 511-520.   DOI
32 SAS. 2004. SAS/STAT. Statistical Analysis Systems for Windows. Release 9.1, p. 423. SAS Institute Inc., Cary, NC, USA.
33 Schleifer KH, Kilpper-Bälz R. 1984. Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int. J. Syst. Evol. Microbiol. 34: 31-34.
34 Sirohi SK, Pandey P, Goel N. 2012. Response of fumaric acid addition on methanogenesis, rumen fermentation, and dry matter degradability in diets containing wheat straw and sorghum or berseem as roughage source. ISRN Vet. Sci. 2012: 496801.   DOI
35 Van Soest PJ. 1982. Nutritional Ecology of the Ruminant. Comstock, Cornell University Press, New York.
36 Spencer ME, Guest JR. 1973. Isolation and properties of fumarate reductase mutants of Escherichia coli. J. Bacteriol. 114: 563-570.
37 van Beers-Schreurs HMG, Nabuurs MJA, Vellenga L, Valk HJK-vd, Wensing T, Breukink HJ. 1998. Weaning and the weanling diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short-chain fatty acids in the large intestine and blood. J. Nutr. 128: 947-953.   DOI
38 Tabaru H, Kadota E, Yamada H, Sasaki N, Takeuchi A. 1988. Determination of volatile fatty acids and lactic acid in bovine plasma and ruminal fluid by high performance liquid chromatography. Jpn. J. Vet. Sci. 50: 1124-1126.   DOI