• Title/Summary/Keyword: E. anguillarum

Search Result 27, Processing Time 0.022 seconds

The antimicrobial compound of Rhus verniciflua barks against fish pathogenic gram-negative bacteria, Edwardsiella tarda and Vibrio anguillarum (어류병원성 그람음성세균 Edwardsiella tarda와 Vibrio anguillarum에 대한 칠피의 항균활성물질)

  • Kang, So-Young
    • Journal of fish pathology
    • /
    • v.18 no.3
    • /
    • pp.227-237
    • /
    • 2005
  • To obtain antimicrobial compounds against fish pathogenic bacteria from natural products, 80% methanolic extracts from 14 species of medicinal plant were screened for antimicrobial activity against fish pathogenic bacteria, Edwardsiella tarda and Vibrio anguillarum. Among them, Glycyrrhiza glabra, Rhus vemiciflua and Sanguisorba officinalis were effective for growth inhibition of Gram-negative bacteria, both E. tarda YSF and V. anguillarum YSR. Through the activity-guided isolation for R. verniciflua extract that exhibited the highest antimicrobial activity among three extracts, one antimicrobial compound (1) was isolated and identified as methyl-3,4,5-trihydroxybenzoate, or methyl gallate. This compound significantly inhibited the growth of tested strains of both E. tarda and V. anguillarum exhibiting MIC of 1 mg/ml for each strain.

Monitoring of Japanese eel (Anguilla japonica) diseases from 2021 to 2023: significance of Japanese Eel Endothelial Cells-infecting Virus (JEECV) and Edwardsiella anguillarum (2021년부터 2023년까지 뱀장어(Anguilla japonica) 질병 모니터링: 혈관내피세포감염바이러스(JEECV)와 Edwardsiella anguillarum의 중요성)

  • Hyeon-Kyeong Kim;Mun-Hee Jang;Sung-Ju Jung
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.239-250
    • /
    • 2023
  • Disease monitoring was conducted to investigate the recent disease occurrence in Japanese eels (Anguilla japonica). Between May 2021 and March 2022, an investigation was conducted on eels from seven farms experiencing mortality. JEECV (Japanese eel endothelial cells-infecting virus) was detected in all examined farms, each exhibiting co-infections with 1 or 2 bacteria, including Edwardsiella anguillarum, E. piscisida, Aeromonas sp., Citrobacter freundii, Lactococcus garviae, or Vibrio sp. From March 2022 to October 2023, monthly periodic inspections were carried out at a farm in Yeonggwang, Jeollanam-do, for a total of 22 times. JEECV was detected in 10 out of 22 times, even when mortality was not recorded. Bacteria such as E. anguillarum, C. freundii, Aeromonas sp., and Vibrio sp. were isolated, but consistent clinical signs of liver abscess and hemorrhagic lesions were only recognized in fish infected with E. anguillarum. Other bacteria were often isolated from apparently healthy fish. In conclusion, mortality in eel farms frequently occurs due to co-infections of JEECV with bacteria rather than JEECV alone. Therefore, to reduce eel mortality, it is crucial to decrease co-infections, with a particular emphasis of JEECV and E. anguillarum.

Species-Specific Duplex PCR for Detecting the Important Fish Pathogens Vibrio anguillarum and Edwardsiella tarda

  • Jo, Geon-A;Kwon, Sae-Bom;Kim, Na-Kyeong;Hossain, Muhammad Tofazzal;Kim, Yu-Ri;Kim, Eun-Young;Kong, In-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.273-277
    • /
    • 2013
  • Vibriosis caused by Vibrio anguillarum and edwardsiellosis caused by Edwardsiella tarda are septicemic diseases of many commercially important freshwater and marine fishes, and threaten the aquaculture industry in Korea. Early diagnosis and accurate identification of these two bacterial species could help to prevent these diseases and minimize the damage to cultured marine species. This study designed a duplex polymerase chain reaction (PCR) method for the simultaneous detection of two major fish pathogens: V. anguillarum and E. tarda. Each pair of oligonucleotide primers exclusively amplified the target groEL gene of the specific microorganism. Twenty-two Vibrio and ten non-Vibrio enteric species were used to check the specificity of the primers, which were found to be highly specific for the target species, even among closely related species. The detection limit was 400 pg for V. anguillarum and 4 ng for E. tarda when mixed purified DNA was used as the template. This assay showed high specificity and sensitivity in the simultaneous detection of V. anguillarum and E. tarda from artificially inoculated seawater and fish.

Drug Resistance in Fish-Pathogenic Bacteria

  • Aoki, Takashi
    • Journal of fish pathology
    • /
    • v.6 no.1
    • /
    • pp.57-64
    • /
    • 1993
  • The properties and DNA structures of R plasmids differ depending on the species of the fish-pathogens Aeromonas hydrophila, A. salmonicida, Edwardsiella tarda, Enterococcus seriolicida, Pasteurella piscicida and Vibrio anguillarum. However, some R plasmids with the same resistance markers in similar DNA structures were found in A. hydrophila and E. tarda, as well as in A. hydrophila and A. salmonicida. R plasmids from V. anguillarum were classified into three groups according to their DNA structures. The first group was detected before 1977, the second from 1980 to 1983, and the third from 1989 to 1991. R plasmids have been retained within P. piscieida having the same DNA structures and detected at various locations and times. E. seriolicida strains carrying the same R plasmids, which were encoded with resistance to macrolide antibiotics(MLs), lincomycin(LIM), and TC, and to MLs, LIM, and CP. were distributed in yellowtail farms in various districts. The chloramphenicol-resistance(cat) gene of the R plasmids of P. piscicida was classified as CAT type I. The cat of the R plasmids of E, tarda. A. salmonicida was classified as type II. The cat of R plasmids of V. anguillarum was classified into two types. One type detected before 1977, was classified as CAT IV and the other type, detected after 1980, was classified as CAT II. Tetracycline-resistance (tet) V. anguillarum, isolated before 1977 and after 1981, was classified as Tet B and Tet G, respectively. The class D tet gene was widely distributed in R plasmids from fish-pathogens A. hydrophila, E. tarda, P. piscicida, and also V. anguillarum isolated after 1989.

  • PDF

Effects of Dietary Supplementation with Garlic Extract on Immune Responses and Diseases Resistance of Olive Flounder, Paralichthys olivaceus (사료 내 마늘 추출액 첨가가 넙치(Paralichthys olivaceus)의 비특이적 면역반응 및 질병저항성에 미치는 영향)

  • Kim, Seung Min;Jun, Lyu Jin;Yeo, In-Kyu;Jeon, You-Jin;Lee, Kyeong-Jun;Jeong, Hyun Do;Jeong, Joon Bum
    • Journal of fish pathology
    • /
    • v.27 no.1
    • /
    • pp.35-45
    • /
    • 2014
  • In this study, we investigated the effects of dietary 1% garlic extract on nonspecific immune responses and fish diseases (Viral Hemorrhagic Septicemia Virus, Vibrio anguillarum, Streptococcus iniae and Edwardsiella tarda) resistance in olive flounder Paralichthys olivaceus. Fish were fed a commercial diets supplemented with 1% garlic extract for 4 weeks. After the 4 weeks feeding experiment, the artificial infection was made by V. anguillarum, S. iniae, E. tarda and VHSV. And the cumulative mortality was monitored for 2 weeks after artificial infection. The cumulative mortalities decreased in all experiments except for group of E. tarda compared to control group. We observed significantly higher levels of the hematocrit, glucose, total protein, lysozyme activity and the macrophage activity in the experimental group compared to the control group. In the experiments of drug sensitivity and MIC using the three bacteria (V. anguillarum, S. iniae and E. tarda), 1% garlic extract was more effective than the previously reported fermented garlic powder. These results suggested that garlic extract can increase the disease resistance of olive flounder against V. anguillarum, S. iniae and VHSV and the ability of nonspecific immune responses.

Antimicrobial Activities of Alkyl Gallates Alone and in Combination with Antibiotics Against the Fish Pathogenic Bacteria Edwardsiella tarda and Vibrio anguillarum (알킬갈레이트 유도체의 어병세균 Edwardsiella tarda와 Vibrio anguillarum에 대한 항균활성 및 항생제와의 병용효과)

  • Kang, So-Young;Kang, Ji-Young;Kim, Su-Yeon;Kim, Do-Hyung;Oh, Myung-Joo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.3
    • /
    • pp.188-192
    • /
    • 2008
  • Methyl gallate isolated from bark of the tree Rhus verniciflua Stokes has significant antimicrobial activity against the fish pathogenic bacteria Edwardsiella tarda and Vibrio anguillarum. To evaluate the antimicrobial activity of gallate derivatives, eight alkyl gallates were tested. Ethyl gallate and propyl gallate had the highest activities, with MICs of $15.6-31.3{\mu}g/mL$ against E. tarda. For V. anguillarum, propyl gallate and butyl gallate were highly effective, with MICs of $7.81-31.3{\mu}g/mL$. When used in combination with antibiotics, methyl gallate exhibited synergistic effects with oxytetracycline against E. tarda and with norfloxacin against V. anguillarum. These results suggest that short-chain alkyl gallates can be used as alternatives to antibiotics against the fish pathogenic bacteria.

Effects of Different Dietary Vitamin E Levels on Growth Performance, Non-specific Immune Responses, and Disease Resistance against Vibrio anguillarum in Parrot Fish (Oplegnathus fasciatus)

  • Galaz, German Bueno;Kim, Sung-Sam;Lee, Kyeong-Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.7
    • /
    • pp.916-923
    • /
    • 2010
  • We report nutritional physiology and non-specific immune responses of vitamin E in parrot fish for the first time. This study aimed to investigate the essentiality and requirements in diets based on growth performances, non-specific immune responses and a challenge test against Vibrio angullarum. Six casein-gelatin based semi-purified diets were formulated to contain six graded levels of DL-${\alpha}$-tocopheryl acetate (${\alpha}$-TA) at 0, 25, 50, 75, 100 and 500 mg/kg diet (designated as E0, E25, E50, E75, E100 and E500, respectively) and fed to triplicate groups of juvenile parrot fish for 12 weeks. The analyzed dietary concentrations of vitamin E were 0, 38, 53, 87, 119 and 538 mg/kg diet for E0, E25, E50, E75, E100 and E500, respectively. At the end of the feeding trial, growth performance and feed utilization of fish fed the E25 were significantly higher compared to that of fish fed the other diets. Liver ${\alpha}$-tocopherol concentration was significantly increased with an increase in dietary ${\alpha}$-TA in a dose dependent manner. No apparent clinical signs of vitamin E deficiency and mortality were observed in fish fed the basal diet for 12 weeks. Among the immune responses assayed, phagocytic (NBT assay) and myeloperoxidase activities were significantly increased with increment of dietary ${\alpha}$-TA levels. During the challenge test with V. anguillarum, E75, E100, and E500 diets resulted in higher survivals than E0, E25 and E50 diets. The findings of this study suggest that parrot fish require exogenous vitamin E and the optimum dietary level could be approximately 38 mg ${\alpha}$-TA/kg diet for normal growth and physiology. Dietary ${\alpha}$-TA concentration over 500 mg/kg could be required to enhance the nonspecific immune responses and improve the resistance of juvenile parrot fish against V. anguillarum.

Genetic Identification and Biochemical Characteristics of Edwardsiella Strains Isolated from Freshwater Fishes Cultured in Korea (내수면 양식 어류에서 분리된 Edwardsiella 속 균주들의 유전학적 동정 및 생화학적 특성)

  • Jang, Mun Hee;Kim, Keun-Yong;Lee, Yu Hee;Oh, Yun Kyung;Lee, Jeong-Ho;Song, Jun-Young
    • Journal of fish pathology
    • /
    • v.33 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The genus Edwardsiella belonging to the family Enterobacteriaceae is a member of Gram-negative rod-shaped bacteria that cause disease in diverse aquatic organisms such as fish, amphibians and reptiles as well as avians and mammals including human throughout the world. This genus had been composed of three species, E. hoshinae, E. ictaluri and E. tarda, but recent researches erected two novel species, E. anguillarum and E. piscicida that were conventionally identified as E. tarda. In this study, we isolated seven strains belonging to the genus Edwardsiella from freshwater fishes that had been reared at inland fish farms in South Korea and investigated their biochemical characteristics and molecular phylogenetic relationships. The seven strains showed typical characteristics of four Edwardsiella species, E. anguillarum, E. ictaluri, E. piscicida and E. tarda, by biochemical analyses of Gram staining, indole and hydrogen sulfide (H2S) production, and API (Analytic Profile Index) 20E test. Molecular phylogenetic analyses inferred from DNA sequence data of both 16S ribosomal RNA (rRNA) and DNA gyrase subunit B (gyrB) genes were congruent with the biochemical characteristics. As a result, both biochemical and molecular phylogenetic analyses identified four strains isolated from three Anguilla species as E. anguillarum, E. piscicida and E. tarda, two strains from Pelteobagrus fulvidraco and Silurus asotus as E. ictaluri, and one strain from Moroco oxycephalus as E. piscicida. In this study, we isolated and successfully identified recently newly erected species, E. anguillarum and E. piscicida in addition to historically notorious pathogenic species, E. ictaluri and E. tarda. In the future study, systematic and comprehensive monitoring of the four Edwardsiella species are required for studying differences in pathogenicity among freshwater fishes.

Disinfection Effect of Chlorine Dioxide on Pathogenic Bacteria from Marine Fish (이산화염소의 해산어류 병원세균 살균효과)

  • 박경희;오명주;김흥윤
    • Journal of Aquaculture
    • /
    • v.16 no.2
    • /
    • pp.118-123
    • /
    • 2003
  • This study was conducted to investigate the disinfection effects of chlorine dioxide ($ClO_2$) on 4 fish pathogenic bacteria (Vibrio anguillarum, Edwardsiella tarda, Streptococcus sp. and Staphylococcus sp.) isolated from infected olive flounders. The bacteria were exposed to different concentrations of ClO$_2$ (0.129, 0.246 and 0.455 ppm) and response times (0.5, 1, 3, 5 and 10 min), and then were incubated for 12 hr. The effective disinfection concentrations of $ClO_2$ against experimental bacteria by $ClO_2$ for 0.5 min were observed with 0.455 ppm for Staphylococcus sp., 0.246 ppm for V. anguillarum and E. tarda, and 0.129 ppm for Streptococcus sp., respectively. The duration of exposure at low concentration of $ClO_2$ increased for the disinfectant ability to experimental bacteria.

Antimicrobial Activities of Korean Marine Algae against Fish Pathogenic Bacteria (한국산 해조류의 어류병원성세균에 대한 항균활성)

  • Kang, So-Young;Oh, Myung-Joo;Shin, Jong-Ahm
    • Journal of fish pathology
    • /
    • v.18 no.2
    • /
    • pp.147-156
    • /
    • 2005
  • To obtain antimicrobial algae against fish pathogenic bacteria, we screened 80% methanolic extracts of 30 algae using fish pathogenic bacteria, Staphylococcus sp., Streptococcus sp., Edwardsiella tarda and Vibrio anguillarum. Among them, Corallina officinalis, Dumontia simplex, Gloipeltis furcata, Grateloupia lanceolata and Grateloupia turuturu were effective for growth inhibition of a Gram-positive bacterium, Staphylococcus sp.. Sargassum thunbergii and Polysiphonia morrowii exhibited significant inhibitory effects against the growth of Gram-negative bacteria, both E. tarda and V. anguillarum. Moreover, antimicrobial activity-guided fractionation for P. morrowii extract yielded significantly active 90% methanolic fraction. This fraction significantly inhibited the growth of E. tarda exhibiting a MIC of 1 mg/ml. In addition, its antimicrobial activity was stable under various pH conditions.