• Title/Summary/Keyword: Dynamic capabilities

Search Result 365, Processing Time 0.028 seconds

Cross-border Search and Dynamic Capability on Business Model Innovation of SMEs in China (중국 중소기업의 국경간 검색과 동적역량이 비지니스혁신에 미치는 영향에 관한 연구)

  • Zhou Ru;Ma Weiwei;Kim DongJoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.371-388
    • /
    • 2023
  • In recent years, the business model innovation of small and medium-sized enterprises has become a hot research issue, and it is also regarded as an important hot issue to promote the transformation and development of small and medium-sized enterprises and promote economic transformation and development. In this study, we analyzes the influence of cross-border search and dynamic capabilities of small and medium-sized enterprises in China on business model innovation. The model of influencing factors is established. After collecting relevant data through questionnaire survey, the model is verified and analyzed. It is verified that for small and medium-sized enterprises in China, dynamic capability and cross-border search have a positive and significant impact on enterprise business model innovation, and dynamic capability plays an intermediary role between cross-border search and enterprise business model innovation. Through this paper, we can give some enlightenment to the business model innovation of small and medium-sized enterprises in China.

Determinants of New Product Performance and Environmental Dynamics as a Moderating Effect (신제품개발성과의 결정요인과 환경동태성의 조절효과)

  • Liu, Zhen;Bang, Ho-Yeol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.1
    • /
    • pp.845-858
    • /
    • 2019
  • The most serious problem company facing in today's business environment is the failure of new product development outcomes. Statistically, almost half of the new products released each year failed. Despite the innovative technological advances, consumers' expectation level become much higher and global competition is intensifying. In addition, the new product life cycle is becoming shorter and shorter. It is difficult for a company to survive without developing long-lived products. The most important issue in a company's success and failure is the successful development and introduction of new products. Previous research has presented many determinants to achieve a successful new product development. This study focuses on dynamic competence as an important determinant, and identifies the constituting elements. Enterprises need to acquire, absorb, integrate and reconfigure their resources to survive and develop continuously. It is necessary to hold a dynamic ability switching resource bases in order to adapt to changing environments. The results of this study are as follows: First, the effect of learning, reconfiguration, and alliance capabilities on the new product development of small and medium-sized manufacturing enterprises seems to be positive. Second, the integrative and reconfiguration capabilities positively affect a new product development under high environmental turbulence.

Bayesian Inference driven Behavior-Network Architecture for Intelligent Agent to Avoid Collision with Moving Obstacles (지능형 에이전트의 움직이는 장애물 충돌 회피를 위한 베이지안 추론 주도형 행동 네트워크 구조)

  • 민현정;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1073-1082
    • /
    • 2004
  • This paper presents a technique for an agent to adaptively behave to unforeseen and dynamic circumstances. Since the traditional methods utilized the information about an environment to control intelligent agents, they were robust but could not behave adaptively in a complex and dynamic world. A behavior-based method is suitable for generating adaptive behaviors within environments, but it is necessary to devise a hybrid control architecture that incorporates the capabilities of inference, learning and planning for high-level abstract behaviors. This Paper proposes a 2-level control architecture for generating adaptive behaviors to perceive and avoid dynamic moving obstacles as well as static obstacles. The first level is behavior-network for generating reflexive and autonomous behaviors, and the second level is to infer dynamic situation of agents. Through simulation, it has been confirmed that the agent reaches a goal point while avoiding static and moving obstacles with the proposed method.

A Study on the Fault Detection of ASIC using Dynamic Pattern Method (Dynamic Pattern 기법을 이용한 주문형 반도체 결함 검출에 관한 연구)

  • Shim, Woo-Che;Jung, Hae-Sung;Kang, Chang-Hun;Jie, Min-Seok;Hong, Gyo-Young;Ahn, Dong-Man;Hong, Seung-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.560-567
    • /
    • 2013
  • In this paper, it is proposed the fault detection method of the ASIC, without the Test Requirement Document(TRD), extracting internal logic circuit and analyzed the function of the ASIC using the multipurpose development program and simulation. If there don't have the TRD, it is impossible to analyze the operation of the circuit and find out the fault detection in any chip. Therefore, we make the TRD based on the analyzed logic data of the ASIC, and diagnose of the ASIC circuit at the gate level through the signal control of I/O pins using the Dynamic Pattern signal. According to the experimental results of the proposed method, we is confirmed the good performance of the fault detection capabilities which applied to the non-memory circuit.

Structural identification of a steel frame from dynamic test-data

  • Morassi, A.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.237-258
    • /
    • 2001
  • Structural identification via modal analysis in structural mechanics is gaining popularity in recent years, despite conceptual difficulties connected with its use. This paper is devoted to illustrate both the capabilities and the indeterminacy characterizing structural identification problems even in quite simple instances, as well as the cautions that should be accordingly adopted. In particular, we discuss an application of an identification technique of variational type, based on the measurement of eigenfrequencies and mode shapes, to a steel frame with friction joints under various assembling conditions. Experience has suggested, so as to restrict the indeterminacy frequently affecting identification issues, having resort to all the a priori acknowledged information on the system, to the symmetry and presence of structural elements with equal stiffness, to mention one example, and mindfully selecting the parameters to be identified. In addition, considering that the identification techniques have a local character and correspond to the updating of a preliminary model of the structure, it is important that the analytical model on the first attempt should be adequately accurate. Secondly, it has proved determinant to cross the results of the dynamic identification with tests of other typology, for instance, static tests, so as to fully understand the structural behavior and avoid the indeterminacy due to the nonuniqueness of the inverse problem.

On the development of the Anuloid, a disk-shaped VTOL aircraft for urban areas

  • Petrolo, Marco;Carrera, Erasmo;D'Ottavio, Michele;de Visser, Coen;Patek, Zdenek;Janda, Zdenek
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.353-378
    • /
    • 2014
  • This paper deals with the early development of the Anuloid, an innovative disk-shaped VTOL aircraft. The Anuloid concept is based on the following three main features: the use of a ducted fan powered by a turboshaft for the lift production to take-off and fly; the Coanda effect that is developed through the circular internal duct and the bottom portion of the aircraft to provide further lift and control capabilities; the adoption of a system of ducted fixed and swiveling radial and circumferential vanes for the anti-torque mechanism and the flight control. The early studies have been focused on the CFD analysis of the Coanda effect and of the control vanes; the flyability analysis of the aircraft in terms of static performances and static and dynamic stability; the preliminary structural design of the aircraft. The results show that the Coanda effect is stable in most of the flight phases, vertical flight has satisfactory flyability qualities, whereas horizontal flight shows dynamic instability, requiring the development of an automatic control system.

A numerical method for the study of fluidic thrust-vectoring

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.367-378
    • /
    • 2016
  • Thrust Vectoring is a dynamic feature that offers many benefits in terms of maneuverability and control effectiveness. Thrust vectoring capabilities make the satisfaction of take-off and landing requirements easier. Moreover, it can be a valuable control effector at low dynamic pressures, where traditional aerodynamic controls are less effective. A numerical investigation of Fluidic Thrust Vectoring (FTV) is completed to evaluate the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The methodology presented is general and can be used to study different techniques of fluidic thrust vectoring like shock-vector control, sonic-plane skewing and counterflow methods. For validation purposes the method will focus on the dual-throat nozzle concept. Internal nozzle performances and thrust vector angles were computed for several range of nozzle pressure ratios and fluidic injection flow rate. The numerical results obtained are compared with the analogues experimental data reported in the scientific literature. The model is integrated using a finite volume discretization of the compressible URANS equations coupled with a Spalart-Allmaras turbulence model. Second order accuracy in space and time is achieved using an ENO scheme.

Multi-body Dynamic Structural Dynamic Analysis of a Canopy System for Supersonic Fighter Considering Backup Emergency Egress Conditions (대체 비상탈출 조건을 고려한 초음속 전투기용 캐노피 작동부 구조해석)

  • Kim, Dong-Hyun;Kim, Dong-Man;Kim, Young-Woo;Yang, Jian-Ming
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.81-87
    • /
    • 2007
  • In this study, analysis of structural design criteria for the canopy actuating device has been conducted considering the aerodynamic breakaway capabilities of jettisonable canopy system. Unsteady aerodynamic loads for the opened canopy configuration at passively controlled jettision mode were computed using CFD method. The general purpose multi-body finite element code, SAMCEF Mecano, is used in the implemented analyses for the passive jettision condition. The recommended altitude and speed of aircraft was suggested as design criteria of aerodynamic breakaway capability of jettisonable canopy system as a bakup egress method when normal canopy jettison sequence malfunctioned. Aerodynamic breakaway condition of jettisonable canopy was also simulated and the fracture load conditions of canopy actuator were investigated.

Numerical simulation of the experimental results of a RC frame retrofitted with RC Infill walls

  • Kyriakides, Nicholas;Chrysostomou, Christis Z.;Kotronis, Panagiotis;Georgiou, Elpida;Roussis, Panayiotis
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.735-752
    • /
    • 2015
  • The effectiveness of seismic retrofitting of RC-frame buildings by converting selected bays into new walls through infilling with RC walls was studied experimentally using a full-scale four-storey model tested with the pseudo-dynamic (PsD) method. The frames were designed and detailed for gravity loads only using different connection details between the walls and the bounding frame. In order to simulate the experimental response, two numerical models were formulated differing at the level of modelling. The purpose of this paper is to illustrate the capabilities of these models to simulate the experimental nonlinear behaviour of the tested RC building strengthened with RC infill walls and comment on their effectiveness. The comparison between the capacity, in terms of peak ground acceleration, of the strengthened frame and the one of the bare frame, which was obtained numerically, has shown a five-fold increase.

FRONTAL IMPACT FINITE ELEMENT MODELING TO DEVELOP FRP ENERGY ABSORBING POLE STRUCTURE

  • Elmarakbi, A.M.;Sennah, K.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.555-564
    • /
    • 2006
  • The aim of this paper is to contribute to the efficient design of traffic light poles involved in vehicle frontal collisions by developing a computer-based, finite-element model capable of capturing the impact characteristics. This is achieved by using the available non-linear dynamic analysis software "LS-DYNA3D", which can accurately predict the dynamic response of both the vehicle and the traffic light pole. The fiber reinforced polymer(FRP) as a new pole's material is proposed in this paper to increase energy absorption capabilities in the case of a traffic pole involved in a vehicle head-on collision. Numerical analyses are conducted to evaluate the effects of key parameters on the response of the pole embedded in soil when impacted by vehicles, including: soil type(clay and sand) and pole material type(FRP and steel). It is demonstrated from the numerical analysis that the FRP pole-soil system has favorable advantages over steel poles, where the FRP pole absorbed vehicle impact energy in a smoother behavior, which leads to smoother acceleration pulse and less deformation of the vehicle than those encountered with steel poles. Also, it was observed that clayey soil brings a slightly more resistance than sandy soil which helps reducing pole movement at ground level. Finally, FRP pole system provides more energy absorbing leading to protection during minor impacts and under service loading, and remain flexible enough to avoid influencing vehicle occupants, thus reducing fatalities and injuries resulting from the crash.