• Title/Summary/Keyword: Dynamic Yield Stress

Search Result 144, Processing Time 0.023 seconds

A Study on Strain Rate Sensitivity by Unified Viscoplasticity (점소성 이론에 의한 변형률 속도 민감도에 대한 연구)

  • 호괄수
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.600-607
    • /
    • 2004
  • This paper addresses a viscoplastic constitutive model that allows a consistent way of modeling positive and negative rate sensitivities of flow stress concerned with dynamic strain aging. Based on the concept of continuum mechanics, a phenomenological constitutive model includes the use of a yield surface within the framework of unified viscoplasticity theory. To model negative rate sensitivity, rate-dependent back stress is introduced and flow stress in fully developed inelastic deformation regime is thus decomposed into the plastic contribution of rate independency and the viscous one of rate dependency.

Experimental studies on rheological properties of smart dynamic concrete

  • Bauchkara, Sunil D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.183-199
    • /
    • 2017
  • This paper reports an experimental study into the rheological behaviour of Smart Dynamic Concrete (SDC). The investigation is aimed at quantifying the effect of the varying amount of mineral admixtures on the rheology, setting time and compressive strength of SDC containing natural sand and crushed sand. Ordinary Portland cement (OPC) in conjunction with the mineral admixtures was used in different replacement ratio keeping the mix paste volume (35%) and water binder ratio (0.4) constant at controlled laboratory atmospheric temperature ($33^{\circ}C$ to $35^{\circ}C$). The results show that the properties and amount of fine aggregate have a strong influence on the admixture demand for similar initial workability, i.e., flow. The large amounts of fines and lower value of fineness modulus (FM) of natural sand primarily increases the yield stress of the SDC. The mineral admixtures at various replacement ratios strongly contribute to the yield stress and plastic viscosity of SDC due to inter particle friction and cohesion.

Durability Estimation for ER(Electro-Rheological) Fluids of Arabic Gum Components (아라빅 검 성분의 ER유체에 대한 내구성 평가)

  • Kim, O.S.;Park, W.C.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.61-66
    • /
    • 2001
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electric field, and this phase-change typically manifests itself as a many-order-of magnitude change in the rheological behavior. This paper presents experimental results on material properties for an ER fluids of arabic gum components subjected to electrical fatigues. As a first step, ER fluids are made of arabic gum 25% of particle weight-concentration. Following the construction of test mechanism for estimated durability of ER fluid, the dynamic yield stress, shear stress and current density of the ER fluids are experimentally distilled as a function of DC electric field. The durability estimation of operated ER fluids are distilled and compared with those of unused ER fluids. In addition, the surface roughness of the employed electrode for copper and aluminum are evaluated as a function of the number of the electric-field cycles.

  • PDF

Simulation of Bi-dispersed Electrorheological Fluids of Different Particle Sizes by the Extended Maxwell-Wagner Polarization Model (확장된 Maxwell-Wagner 분극 모델에 의한 서로 크기가 다른 입자들로 구성된 이성분계 전기유변 유체의 전산 모사)

  • Kim, Young Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.613-619
    • /
    • 2022
  • The extended Maxwell-Wagner polarization model is employed to describe the ER(Electrorheological) behavior of bi-dispersed ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. Under the same particle volume fraction, it is found that the dynamic yield stresses of uniform size suspensions do not depend on the particle size. Compared with uniform size suspensions, the dynamic yield stress is reduced for ER fluids consisting of two kinds of particles with different sizes. Compared with the dynamic yield stress behavior, for ${\dot{\gamma}}^*$≧0.01 the shear stress shows different behaviors depending on the particle sizes and the raio of different size particles. The simulation results show the nonlinear ER behavior (∆𝛕 ∝ En, n ≈ 1.55) of the conducting particle ER suspensions.

Scaling analysis of electrorheological poly(naphthalene quinone) radical suspensions

  • Min S. Cho;Park, Hyoung J.
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.3_4
    • /
    • pp.151-155
    • /
    • 2000
  • A semiconducting poly(naphthalene quinone) radical (PNQR) was synthesized from Friedel-Craft acylation between naphthalene and phthalic anhydride and used as dispersing particles of a dry-base electrorheological (ER) material in silicone oil. Under an applied electric field (E), the dynamic yield stress (${\tau}_{dyn}$) of this ER fluid, obtained from a steady shear experiment with a controlled shear rate mode, was observed to increase with $E^{1.45}$ Based on this relationship, we propose a universal correlation curve for shear viscosity, which is independent of E using a scaling analysis.

  • PDF

Electrorheology of conducting polyaniline-$BaTiO_3$ composite

  • Kim Ji-Hye;Fang Fei Fei;Lee Ki-Bo;Choi Hyoung-Jin
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.103-107
    • /
    • 2006
  • Organic-inorganic composite of polyaniline and barium titanate (PANI-$BaTiO_3$) was synthesized via an in-situ oxidation polymerization of aniline in the presence of barium titanate ($BaTiO_3$) nanoparticles dispersed in an acidic medium. Barium titanate has large electric resistance and relatively high dielectric constant which is one of the essential properties for its electrorheological (ER) applications. The microstructure and composition of the obtained PANI/$BaTiO_3$ composite were characterized by SEM, FT-IR and XRD. In addition, we also employed a rotational rheometer to investigate the rheological performance of the ER fluids based on both pure PANI particle and PANI/$BaTiO_3$ composite. It was found that the composite materials possess much higher yield stresses than the pristine PANI due to unique dielectric properties of the inorganic $BaTiO_3$ particles. Finally, we also examined dynamic yield stress by analyzing its extrapolated yield stress data as a function of electric field strengths. Using the critical electric field strengths deduced, we further found that the universal yield stress equation collapses their data onto a single curve.

Investigation of Mechanical Characteristics of ER Fluids for Application in Hydraulic Valve (유압밸브 적용을 위한 ER 유체의 역학적 특성 고찰)

  • 김옥삼;이현창;박우철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.84-90
    • /
    • 2001
  • The electro-reheoligical(ER) effect refers to the abrupt change in viscosity in certain suspensions on application of an electric field. This paper presents experimental results on material properties of an ER fluids subjected to electrical fatigues. As a first step, two types of EF fluids are made of arabic gum and methyl cellulose(MC) choosing 25% of parti-cle weight-concentration. Following the construction of test mechanism for electrical durability of ER fluid, the dynamic yield shear stress and current density of the ER fluids are experimentally distilled as a function of electric field. The yield shear stress of operated ER fluids are distilled and compared with those of unused ER fluids.

  • PDF

Yield Stress of Kochujang with Vane Method (Vane 방법을 이용한 고추장의 항복응력 측정)

  • Chang, Yoon-Hyuk;Yoo, Byoung-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.974-978
    • /
    • 2000
  • The vane method was used to measure yield stresses of five commercial kochujang samples under a controlled shear-rate operating condition. Magnitudes of vane yield stress were higher than those of yield stress using Casson model with a concentric cylinder viscometer. Magnitudes of vane yield stresses showed great differences between the static $({\sigma}_s)$ and dynamic yield stresses $({\sigma}_d)$ of kochujang samples with undisturbed structure (UDS) and with broken down structure (BDS). A dimensionless yield number $(N{\sigma}_o)$ was determined from the ratio of ${\sigma}s$ to ${\sigma}d$ in order to describe the existence of temporary structure of kochujang.

  • PDF

Rheological Behavior of Sweet Potato Starch-Glucose Composites

  • Cho, Sun-A;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.417-420
    • /
    • 2008
  • Rheological properties of sweet potato starch (SPS)-glucose composites (5%, w/w) at different concentrations (0, 10, 20, and 30%, w/w) of glucose were investigated in steady and dynamic shear. The steady shear rheological properties of SPS-glucose composites were determined from rheological parameters for power law and Casson flow models. At $25^{\circ}C$ all the samples showed a pronounced shear-thinning behaviors (n=0.29-0.37) with high Casson yield stress. In general, the presence of glucose resulted in the decrease in consistence index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$). Storage (G') and loss (G") moduli increased with an increase in frequency ($\omega$), while complex viscosity (${\eta}*$) decreased. Dynamic moduli (G', G", and ${\eta}*$) of the SPS-glucose composites at higher glucose concentrations (20 and 30%) were higher than those of the control (0% glucose) and also increased with increasing glucose concentration from 10 to 30%. The effect of glucose on steady and dynamic shear rheological properties of the SPS pastes appears to greatly depend on glucose concentration in the range of 10-30%.

Electrorheological Properties of Anhydrous ER Suspensions Based on Phosphated Cellulose (인산처리 셀룰로오스를 첨가한 비수계 ER 유체의 전기유변학적 특성)

  • 안병길;최웅수;권오관;문탁진
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 1998
  • The electrorheological (ER) behavior of suspensions in silicone oil of phosphated cellulose particles (average particle size 17.77 ${\mu}{\textrm}{m}$) was investigated at room temperature with electric fields up to 2.5 KV/mm. In this paper, for development of anhydrous ER suspensions using at wide temperature range, we would like to know fundamental understandings on the ER activity. As a first step, the anhydrous ER suspensions dispersed the phosphated cellulose particles were measured, and not only the electrical characteristics such as dielectric constant, current density and electrical conductivity but also the rheological properties on strength of electric field and quantity of dispersed phase were studied. From the experimental results, the anhydrous ER suspensions dispersed phosphated cellulose particles showed a stable current density and very high performance of ER effect $(\tau/\tau_0=1030)$ on the 2.5 KV/mm and the dynamic yield stress $(\tau_y)$ was in exponential proportion to the strength of electric fields.