Scaling analysis of electrorheological poly(naphthalene quinone) radical suspensions

  • Min S. Cho (Department of Polymer Science and Engineering Inha University) ;
  • Park, Hyoung J. (Department of Polymer Science and Engineering Inha University)
  • Published : 2000.12.01

Abstract

A semiconducting poly(naphthalene quinone) radical (PNQR) was synthesized from Friedel-Craft acylation between naphthalene and phthalic anhydride and used as dispersing particles of a dry-base electrorheological (ER) material in silicone oil. Under an applied electric field (E), the dynamic yield stress (${\tau}_{dyn}$) of this ER fluid, obtained from a steady shear experiment with a controlled shear rate mode, was observed to increase with $E^{1.45}$ Based on this relationship, we propose a universal correlation curve for shear viscosity, which is independent of E using a scaling analysis.

Keywords

References

  1. J. Phys. D. Appl. Phys v.21 Block H.;J. P. Kelly
  2. Langmuir v.6 Block H.;J. P. Kelly;A. Qin;T. Waton
  3. Int. J. Mod. Phys v.10 Bloodworth R.;E. Wendt
  4. In. J. Mod. Phys. v.13 Chin B. D.;Y. S. Lee;O O. Park
  5. Korean J. Rheol v.10 Chin B. D.;Y. S. Lee;H. J. Lee;S. m. Yang;O O. Park
  6. Macromol. Rapid Commun v.19 Cho M. S.;H. J. Choi;K. to
  7. Micropor Mesopor. Mater. v.32 Cho M. S.;H. J. ChoiI. J. Chin;W. S. Ahn
  8. Micropor. Mesopor. Mater v.39 Choi H. J.;M .S. Cho;K. K. Kang;W. S. Ahn
  9. Polym. Adv. Tech v.8 Choi H. J.;M. S. Cho;M. S. Jhon
  10. Eur. Polym. J. v.35 Choi H. J.;T. W. Kim;M. S. Cho;S. G. Kim;M. S. Jhon
  11. J. Intell. Mater. Sys. Struct. v.4 Coutler J. P.;K. D. Weiss;J. D. Carlson
  12. In Melt Rheology and its Role in Plastics Processing;Theory and Applications Van Nostrand Reinhold Dealy J. M.;K. F. Wissburn
  13. World Scientific In Electrorheological Fluids, Mechanisms, Properties, Technology and Applications Felici N.;J. N. Foulc;P. Atten;R. Tao(es.);G. D. Roy(ed.)
  14. Adv. Collid Int. Sci. v.30 Gast A. P.;C. F. Zukoski
  15. J. Phys. Chem. v.101 Goodwin J. W.;G. M. Markham;B. Vincent
  16. J. Collid Interface Sci. v.136 Gow C. J.;C. F. Zukoski
  17. Science v.258 Halsey T. C.
  18. Langmuir v.14 Hao T.;A. Kawai;F. Ikazaki
  19. Int. J. Mod. Phys v.10 Hao T.;A. Kawai;F. Ikazaki
  20. Korean J. Rheol. v.6 Hwang I.;S. J. Lee
  21. J. Phys. D: Appl. Phys. v.31 Ikazaki F.;A. Kawai;K. Uchida;T. Kawakami;K. Edmura;K. Sakurai;H. Anzai;Y. Asako
  22. J. Rheol. v.36 Jordan T. C.;M. T. Shaw;T. C. Mcleish
  23. Korean. J. Rheol. v.11 Kim H. K.;S. C. Lim;S. B. Choi;Y. P. Park
  24. Macromol. Rapid Commun. v.20 Kim. J. W.;S. G. Kim;H. J. Choi;M. S. Jhon
  25. Macromol. Chem. Phys. Kim. S. G.;H. J. Choi;M. S. Jhon
  26. J. Chem. Phys. v.94 Klingenberg D. J.;F. von Swol;C. F. Zukoski
  27. Collid. Polym. Sci. v.277 Lee J. H.;M. S. Cho;H. J. Choi;M. S. Jhon
  28. J. Rheol. v.36 no.3 Otsubo Y;M. Sekine;S. Katayama
  29. Mater. Sci. Eng. v.17 Parthasarathy M;D. J. Klingenberg
  30. J. Phys. Chem. v.66 Phol H. A.;E. H. Engelhardt
  31. Korea-Australia Rheol. J. v.11 See H.
  32. Int. J. Mod. Phys. v.8 Shih Y. H.;H Conrad
  33. Phys. Rev. v.52 Tanaka K.;A. Sahashi;R.Akiyama;K. Koyama
  34. J. Rheol. v.35 no.7 Thurston G. B.;E. B. Gaertner