• Title/Summary/Keyword: Dynamic X-ray

Search Result 219, Processing Time 0.023 seconds

Preparation and Characterization of Rubber/Clay Nanocomposite Using Skim Natural Rubber Latex (스킴천연고무 라텍스를 이용한 고무/점토 나노복합체의 제조 및 특성)

  • Alex, R.;Kim, M.J.;Lee, Y.S.;Nah, C.
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.252-259
    • /
    • 2006
  • A new route for making rubber/clay nanocomposites was suggested based on skim natural rubber latex (SNRL), which is a protein rich by-product obtained during the centrifugal concentration of natural rubber (NR) latex. NR/acrylonitrile butadiene rubber (NBR) based nanocomposites were prepared from SNRL and NBR latex of 26 % acrylonitrile content by blending of aqueous dispersion of organoclay (OC) followed by coagulation, drying, mill mixing and vulcanization. X-ray diffraction(XRD) studies revealed that NR/NBR blend nanocomposites exhibited a highly intercalated and exfoliated structure, especially for NBR-rich blends. Dynamic mechanical studies showed that more compatible behavior was observed for NBR-rich blends. The 25/75 NR/NBR blend nanocomposite showed the best mechanical properties.

Application of black phosphorus nanodots to live cell imaging

  • Shin, Yong Cheol;Song, Su-Jin;Lee, Yu Bin;Kang, Moon Sung;Lee, Hyun Uk;Oh, Jin-Woo;Han, Dong-Wook
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.352-359
    • /
    • 2018
  • Background: Black phosphorus (BP) has emerged as a novel class of nanomaterials owing to its unique optical and electronic properties. BP, a two-dimensional (2D) nanomaterial, is a structure where phosphorenes are stacked together in layers by van der Waals interactions. However, although BP nanodots have many advantages, their biosafety and biological effect have not yet been elucidated as compared to the other nanomaterials. Therefore, it is particularly important to assess the cytotoxicity of BP nanodots for exploring their potentials as novel biomaterials. Methods: BP nanodots were prepared by exfoliation with a modified ultrasonication-assisted solution method. The physicochemical properties of BP nanodots were characterized by transmission electron microscopy, dynamic light scattering, Raman spectroscopy, and X-ray diffractometry. In addition, the cytotoxicity of BP nanodots against C2C12 myoblasts was evaluated. Moreover, their cell imaging potential was investigated. Results: Herein, we concentrated on evaluating the cytotoxicity of BP nanodots and investigating their cell imaging potential. It was revealed that the BP nanodots were cytocompatible at a low concentration, although the cell viability was decreased with increasing BP nanodot concentration. Furthermore, our results demonstrated that the cells took up the BP nanodots, and the BP nanodots exhibited green fluorescence. Conclusions: In conclusion, our findings suggest that the BP nanodots have suitable biocompatibility, and are promising candidates as fluorescence probes for biomedical imaging applications.

Evaluation of the dose distribution in Mapcheck using Enhanced Dynamic Wedge (Enhanced Dynamic Wedge를 사용한 Mapcheck에서의 선량분포 평가)

  • Kang, Su-Man;Jang, Eun-Sun;Lee, Byung-Koo;Jung, Bong-Jae;Shin, Jung-Sub;Park, Cheol-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.343-349
    • /
    • 2012
  • Intensity Modulated Radiotherapy (IMRT) is increasing its use recently due to its benefits of minimizing the dose on surrounding normal organs and being able to target a high dose specifically to the tumor. The study aims to measure and evaluate the dose distribution according to its dynamic changes in Mapcheck. In order to verify the dose distribution by EDW angle($10^{\circ}$,$15^{\circ}$,$20^{\circ}$,$25^{\circ}$,$30^{\circ}$,$45^{\circ}$,$60^{\circ}$), field size (asymmetric field) and depth changes (1.5 cm, 5.0 cm) using IMRT in Clinac ix, a solid phantom was placed on the Mapcheck and 100MU was exposed by 6 MV, 10MV X-ray. Using a 6MV, 10MV energy, the percentage depth dose according to a dynamic changes at a maximum dose depth (1.5 cm) and at 5.0 cm depth showed the value difference of maximum 0.6%, less than 1%, which was calculated by a treatment program device considering the maximum dose depth at the center as 100%, the percentage depth dose was in the range between 2.4% and 7.2%. Also, the maximum value difference of a percentage depth dose was 4.1% in Y2-OUT direction, and 1.7% in Y1-IN direction. When treating a patient using a wedge, it is considered that using an enhanced dynamic wedge is effective to reduce the scattered dose which induces unnecessary dose to the surroundings. In particular, when treating a patient at clinic, a treatment must be performed considering that the wedge dose in a toe direction is higher than the dose in a heel direction.

The Necessity of Resetting the Filter Criteria for the Minimization of Dose Creep in Digital Imaging Systems (디지털 영상 시스템에서 선량 크리프 최소화를 위한 부가 필터 두께 권고 기준의 재설정에 대한 연구)

  • Kim, Kyo Tae;Kim, Kum Bae;Kang, Sang Sik;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.757-763
    • /
    • 2019
  • Recently, Following the recent development of flat panel detector with wide dynamic ranges, increasing numbers of healthcare providers have begun to use digital radiography. As a result, filter thickness standards should be reestablished, as current clinical practice requires the use of thicknesses recommended by the National Council on Radiation Protection and Measurements, which are based on information, acquired using conventional analog systems. Here we investigated the possibility of minimizing dose creep and optimizing patient dose using Al filters in digital radiography. The use of thicker Al filters resulted in a maximum 19.3% reduction in the entrance skin exposure dose when medical images with similar sharpness values were compared. However, resolution, which is a critical factor in imaging, had a significant change of 1.01 lp/mm. This change in resolution is thought to be due to the increased amount of scattered rays generated from the object due to the X-ray beam hardening effect. The increase in the number of scattered rays was verified using the scattering degradation factor. However, the FPD, which has recently been developed and is widely used in various areas, has greater response to radiation than analog devices and has a wide dynamic range. Therefore, the FPD is expected to maintain an appropriate level of resolution corresponding to the increase in the scattered-ray content ratio, which depends on filter thickness. Use of the FPD is also expected to minimize dose creep by reducing the exposure dose.

Synthesis and Crystal Structure of Lead Iodide in the Sodalite Cavities of Zeolite A (LTA)

  • Kim, Seok-Han;Lim, Woo-Taik;Kim, Ghyung-Hwa;Lee, Heung-Soo;Heo, Nam-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.679-686
    • /
    • 2006
  • The positions of $PbI _2$ molecule synthesized into the molecular-dimensioned cavities of $\mid K_6 (Pb _4I_2)(PbI_2) _{0.67}-(H_2O)_2\mid [Si _{12}Al _{12}O _{48}]$-LTA have been determined. A single crystal of $\mid Pb _6\mid [Si _{12}Al _{12}O _{48}]$-LTA, prepared by the dynamic ion-exchange of $\mid Na _{12}\mid [Si _{12}Al _{12}O _{48}]$-LTA with aqueous 0.05 M $Pb _(NO _3)_2$ and washed with deionized water, was placed in a stream of flowing aqueous 0.05 M KI at 294 K for three days. The resulting crystal structure of the product $( \mid K_6 (Pb _4I_2)(PbI_2) _{0.67}(H_2O)_2\mid [Si _{12}Al _{12}O _{48}]$-LTA, a = 12.353(1) $\AA$) was determined at 294 K by single-crystal X-ray diffraction in the space group Pm3 m. It was refined with all measured reflections to the final error index $R_1$ = 0.062 for 623 reflections which $F_o$ > 4$\sigma$($F_o$). 4.67 $Pb ^{2+}$ and six $K^+$ ions per unit cell are found at three crystallographically distinct positions: 3.67 $Pb ^{2+}$ and three $K^+$ ions on the 3-fold axes opposite six-rings in the large cavity, three $K^+$ ions off the plane of the eight-rings, and the remaining one $Pb ^{2+}$ ion lies opposite four-ring in the large cavity. 0.67 $Pb ^{2+}$ ions and 1.34 $I^-$ ions per unit cell are found in the sodalite units, indicating the formation of a $PbI _2$ molecule in 67% of the sodalite units. Each $PbI _2$ (Pb-I = 3.392(7) $\AA$) is held in place by the coordination of its one $Pb ^{2+}$ ion to the zeolite framework (a $Pb ^{2+}$ cation is 0.74 $\AA$ from a six-ring oxygens) and by the coordination of its two $I^-$ ions to $K^+$ ions through six-rings (I-K = 3.63(4) $\AA$). Two additional $I^-$ ions per unit cell are found opposite a four-ring in the large cavity and form $Pb _2K_2I^{5+}$ and $Pb _2K_2I^{3+}$ moieties, respectively, and two water molecules per unit cell are also found on the 3-fold axes in the large cavity.

High Resolution Time Resolved Contrast Enhanced MR Angiography Using k-t FOCUSS (k-t FOCUSS 알고리듬을 이용한 고분해능 4-D MR 혈관 조영 영상 기법)

  • Jung, Hong;Kim, Eung-Yeop;Ye, Jong-Chul
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.1
    • /
    • pp.10-20
    • /
    • 2010
  • Purpose : Recently, the Recon Challenge at the 2009 ISMRM workshop on Data Sampling and Image Reconstruction at Sedona, Arizona was held to evaluate feasibility of highly accelerated acquisition of time resolved contrast enhanced MR angiography. This paper provides the step-by-step description of the winning results of k-t FOCUSS in this competition. Materials and Methods : In previous works, we proved that k-t FOCUSS algorithm successfully solves the compressed sensing problem even for less sparse cardiac cine applications. Therefore, using k-t FOCUSS, very accurate time resolved contrast enhanced MR angiography can be reconstructed. Accelerated radial trajectory data were synthetized from X-ray cerebral angiography images and provided by the organizing committee, and radiologists double blindly evaluated each reconstruction result with respect to the ground-truth data. Results : The reconstructed results at various acceleration factors demonstrate that each components of compressed sensing, such as sparsifying transform and incoherent sampling patterns, etc can have profound effects on the final reconstruction results. Conclusion : From reconstructed results, we see that the compressed sensing dynamic MR imaging algorithm, k-t FOCUSS enables high resolution time resolved contrast enhanced MR angiography.

Synthesis and Crystal Structure of Ag4Br4 Nanoclusters in the Sodalite Cavities of Fully K+-Exchanged Zeolite A (LTA)

  • Lim, Woo-Taik;Choi, Sik-Young;Kim, Bok-Jo;Kim, Chang-Min;Lee, In-Su;Kim, Seok-Han;Heo, Nam-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1090-1096
    • /
    • 2005
  • $Ag_4Br_4$ nanoclusters have been synthesized in about 75% of the sodalite cavities of fully $K^+$-exchanged zeolite A (LTA). An additional KBr molecule is retained in each large cavity as part of a near square-planar $K_4Br^{3+}$ cation. A single crystal of $Ag_{12}$-A, prepared by the dynamic ion-exchange of $Na_{12}$-A with aqueous 0.05 M $AgNO_3$ and washed with $CH_3OH$, was placed in a stream of flowing 0.05 M KBr in $CH_3OH$ for two days. The crystal structure of the product ($K_9(K_4Br)Si_{12}Al_{12}O_{48}{\cdot}0.75Ag_4Br_4$, a = 12.186(1) $\AA$) was determined at 294 K by single-crystal X-ray diffraction in the space group Pm m. It was refined with all measured reflections to the final error index $R_1$ = 0.080 for the 99 reflections for which $F_o\;{\gt}\;4_{\sigma}\;(F_o)$. The thirteen $K^+$ ions per unit cell are found at three crystallographically distinct positions: eight $K^+$ ions in the large cavity fill the six-ring site, three $K^+$ ions fill the eight-rings, and two $K^+$ ions are opposite four-rings in the large cavity. One bromide ion per unit cell lies opposite a four-ring in the large cavity, held there by two eight-ring and two six-ring $K^+$ ions ($K_4Br^{3+}$). Three $Ag^+$ and three $Br^-$ions per unit cell are found on 3-fold axes in the sodalite unit, indicating the formation of nano-sized $Ag_4Br_4$ clusters (interpenetrating tetrahedra; symmetry $T_d$; diameter ca. 7.9 $\AA$) in 75% of the sodalite units. Each cluster (Ag-Br = 2.93(3) $\AA$) is held in place by the coordination of its four $Ag^+$ ions to the zeolite framework (each $Ag^+$ cation is 2.52(3) $\AA$ from three six-ring oxygens) and by the coordination of its four $Br^-$ ions to $K^+$ ions through six-rings (Br-K = 3.00(4) $\AA$).

Magnesium Sulfate Resistance of Geopolymer Incorporating Evaporated Rice Husk Powder (증해추출 왕겨분말을 혼입한 지오폴리머의 황산마그네슘 저항성에 관한 연구)

  • Cho, Seung-Bi;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.663-672
    • /
    • 2022
  • The purpose of this study is to evaluate the magnesium sulfate resistance of a geopolymer mixed with rice husk powder. General concrete, silica fume mixed concrete, and binary blended geopolymer were selected as comparison targets to confirm the magnesium sulfate resistance, and sulfate deterioration was calculated using the compressive strengths with ages. In addition, the weight change rate and the relative dynamic coefficient of the geopolymer were comparatively analyzed, and the degree of etteringite formation was confirmed using X-ray diffraction analysis. the experiment, the geopolymer mixed with 10% rice husk powder showed 10.8% higher compressive strength than concrete with silica fume when submerged for 56 days. Also, the geopolymer mixed with rice husk powder showed a small weight change rate of 0.9 to 1.45%. composition after immersion in magnesium sulfate through X-ray diffraction analysis, it was observed that a small amount of ettringite was dispersed in the geopolymer containing rice husk powder. Thus, there is a high correlation with the corrosion resistance of magnesium sulfate

Comparison of Volumes between Four-Dimensional Computed Tomography and Cone-Beam Computed Tomography Images using Dynamic Phantom (호흡동조전산화단층촬영과 콘빔전산화단층촬영의 팬텀 영상 체적비교)

  • Kim, Seong-Eun;Won, Hui-Su;Hong, Joo-Wan;Chang, Nam-Jun;Jung, Woo-Hyun;Choi, Byeong-Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • Purpose : The aim of this study was to compare the differences between the volumes acquired with four-dimensional computed tomography (4DCT)images with a reconstruction image-filtering algorithm and cone-beam computed tomography (CBCT) images with dynamic phantom. Materials and Methods : The 4DCT images were obtained from the computerized imaging reference systems (CIRS) phantom using a computed tomography (CT) simulator. We analyzed the volumes for maximum intensity projection (MIP), minimum intensity projection (MinIP) and average intensity projection (AVG) of the images obtained with the 4DCT scanner against those acquired from CBCT images with CT ranger tools. Results : Difference in volume for node of 1, 2 and 3 cm between CBCT and 4DCT was 0.54~2.33, 5.16~8.06, 9.03~20.11 ml in MIP, respectively, 0.00~1.48, 0.00~8.47, 1.42~24.85 ml in MinIP, respectively and 0.00~1.17, 0.00~2.19, 0.04~3.35 ml in AVG, respectively. Conclusion : After a comparative analysis of the volumes for each nodal size, it was apparent that the CBCT images were similar to the AVG images acquired using 4DCT.

  • PDF

Evaluation of Dosimetric Characteristics of a Double-focused Dynamic Micro-Multileaf Collimator (DMLC) (이중으로 집중된 동적 미세 다엽콜리메이터의 선량학적 특성 평가)

  • Kim, Ae Ran;Seo, Jae-Hyuk;Shin, Hun-Joo;Park, Hyeong Wook;Lee, Ki Woong;Lee, Jae Choon;Kim, Shin-Wook;Kim, Ji Na;Park, Hyeli;Lee, Heui-Kwan;Kang, Young-Nam
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.223-228
    • /
    • 2015
  • Double-focused micro-Multileaf Collimator (${\mu}MLC$) is able to create radiation fields having sharper dose gradients at the field edges than common MLC. Therefore, ${\mu}MLC$ has been used for the stereotactic radiosurgery (SRS) and Stereotactic Radiotherapy (SRT). We evaluated the dosimetric characteristics of a doublefocused Dynamic-${\mu}MLC$ (DMLC) attached to the Elekta Synergy linear accelerator. For this study, the dosimetric parameters including, Percent Depth Dose (PDD), Leaf leakage and penumbra, have been measured by using of the radiochromic films (GafChromic EBT2), EDGE diode detector and three-dimensional water phantom. All datas were measured on 6 MV x-ray. As a result, The DMLC shows transmission below to 1% and because of double-focused construction of the DMLC, the penumbras of fields with DMLC are independent from the field sizes. In this paper, the resulting dosimetric evaluations proved the applicability of the DMLC attached to the Elekta Synergy linear accelerator.