Browse > Article
http://dx.doi.org/10.1186/s40824-018-0142-x

Application of black phosphorus nanodots to live cell imaging  

Shin, Yong Cheol (Research Center for Energy Convergence Technology, Pusan National University)
Song, Su-Jin (Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University)
Lee, Yu Bin (Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University)
Kang, Moon Sung (Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University)
Lee, Hyun Uk (Advanced Nano-Surface Research Group, Korea Basic Science Institute (KBSI))
Oh, Jin-Woo (Department of Nanofusion Technology, College of Nanoscience & Nanotechnology, Pusan National University)
Han, Dong-Wook (Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University)
Publication Information
Biomaterials Research / v.22, no.4, 2018 , pp. 352-359 More about this Journal
Abstract
Background: Black phosphorus (BP) has emerged as a novel class of nanomaterials owing to its unique optical and electronic properties. BP, a two-dimensional (2D) nanomaterial, is a structure where phosphorenes are stacked together in layers by van der Waals interactions. However, although BP nanodots have many advantages, their biosafety and biological effect have not yet been elucidated as compared to the other nanomaterials. Therefore, it is particularly important to assess the cytotoxicity of BP nanodots for exploring their potentials as novel biomaterials. Methods: BP nanodots were prepared by exfoliation with a modified ultrasonication-assisted solution method. The physicochemical properties of BP nanodots were characterized by transmission electron microscopy, dynamic light scattering, Raman spectroscopy, and X-ray diffractometry. In addition, the cytotoxicity of BP nanodots against C2C12 myoblasts was evaluated. Moreover, their cell imaging potential was investigated. Results: Herein, we concentrated on evaluating the cytotoxicity of BP nanodots and investigating their cell imaging potential. It was revealed that the BP nanodots were cytocompatible at a low concentration, although the cell viability was decreased with increasing BP nanodot concentration. Furthermore, our results demonstrated that the cells took up the BP nanodots, and the BP nanodots exhibited green fluorescence. Conclusions: In conclusion, our findings suggest that the BP nanodots have suitable biocompatibility, and are promising candidates as fluorescence probes for biomedical imaging applications.
Keywords
Black phosphorus; Cell imaging; C2C12 myoblast; Fluorescence probe; Biomedical imaging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shin YC, Song S-J, Hong SW, Jeong SJ, Chrzanowski W, Lee J-C, et al. Multifaceted biomedical applications of functional graphene nanomaterials to coated substrates, patterned arrays and hybrid scaffolds. Nanomaterials. 2017;7(11):369.   DOI
2 Yi G, Son J, Yoo J, Park C, Koo H. Application of click chemistry in nanoparticle modification and its targeted delivery. Biomater Res. 2018;22(1):13.   DOI
3 Kang E-S, Kim D-S, Suhito IR, Lee W, Song I, Kim T-H. Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation. Biomater Res. 2018;22(1):10.   DOI
4 Lee HU, Park SY, Lee SC, Choi S, Seo S, Kim H, et al. Black phosphorus (BP) nanodots for potential biomedical applications. Small. 2016;12(2):214-9.   DOI
5 Batmunkh M, Bat-Erdene M, Shapter JG. Phosphorene and phosphorenebased materials-prospects for future applications. Adv Mater. 2016;28(39):8586-617.   DOI
6 Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, et al. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J Am Chem Soc. 2015;137(35):11376-82.   DOI
7 Erande MB, Pawar MS, Late DJ. Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets. ACS Appl Mater Interfaces. 2016;8(18):11548-56.   DOI
8 Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv Mater. 2017;29(1):1603276.   DOI
9 Tran V, Soklaski R, Liang Y, Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B. 2014;89(23):235319.   DOI
10 Woomer AH, Farnsworth TW, Hu J, Wells RA, Donley CL, Warren SC. Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano. 2015;9(9):8869-84.   DOI
11 Asati A, Santra S, Kaittanis C, Perez JM. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano. 2010;4(9):5321-31.   DOI
12 Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang LP. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol. 2010;7:22.   DOI
13 Akhavan O, Ghaderi E, Akhavan A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials. 2012;33(32):8017-25.   DOI
14 Kim MJ, Lee JH, Shin YC, Jin L, Hong SW, Han D-W, et al. Stimulated myogenic differentiation of C2C12 murine myoblasts by using graphene oxide. J Korean Phys Soc. 2015;67(11):1910-4.   DOI
15 Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662-8.   DOI
16 Bhattacharjee S, de Haan LHJ, Evers NM, Jiang X, Marcelis ATM, Zuilhof H, et al. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol. 2010;7(1):25.   DOI
17 Frohlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577.
18 Bhattacharjee S, Ershov D, Jvd G, Alink GM, IMCM R, Zuilhof H, et al. Surface charge-specific cytotoxicity and cellular uptake of tri-block copolymer nanoparticles. Nanotoxicology. 2013;7(1):71-84.   DOI
19 Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett. 2008;463(1-3):145-9.   DOI
20 Morita A. Semiconducting black phosphorus. Appl Phys A Mater Sci Process. 1986;39(4):227-42.   DOI
21 Zhang J, Liu HJ, Cheng L, Wei J, Liang JH, Fan DD, et al. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci Rep. 2014;4:6452.
22 Flores E, Ares JR, Castellanos-Gomez A, Barawi M, Ferrer IJ, Sanchez C. Thermoelectric power of bulk black-phosphorus. Appl Phys Lett. 2015;106(2):022102.   DOI
23 Cakir D, Sahin H, Peeters FM. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys Rev B. 2014;90(20):205421.   DOI
24 Hu T, Hashmi A, Hong J. Geometry, electronic structures and optical properties of phosphorus nanotubes. Nanotechnology. 2015;26(41):415702.   DOI
25 Jiang J-W, Park HS. Mechanical properties of single-layer black phosphorus. J Phys D Appl Phys. 2014;47(38):385304.   DOI
26 Sun C, Wen L, Zeng J, Wang Y, Sun Q, Deng L, et al. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials. 2016;91:81-9.   DOI
27 Wei Q, Peng X. Superior mechanical flexibility of phosphorene and fewlayer black phosphorus. Appl Phys Lett. 2014;104(25):251915.   DOI
28 Akahama Y, Endo S. Narita S-i. electrical properties of black phosphorus single crystals. J Phys Soc Jpn. 1983;52(6):2148-55.   DOI
29 Buscema M, Groenendijk DJ, Steele GA, van der HSJ Z, Castellanos-Gomez A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat Commun. 2014;5:4651.   DOI
30 Park CM, Sohn HJ. Black phosphorus and its composite for lithium rechargeable batteries. Adv Mater. 2007;19(18):2465-8.   DOI
31 Cheng L, Liu J, Gu X, Gong H, Shi X, Liu T, et al. PEGylated $WS_{2}$ nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv Mater. 2014;26(12):1886-93.   DOI
32 Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol. 2009;6(1):35.   DOI
33 Chen W, Ouyang J, Liu H, Chen M, Zeng K, Sheng J, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv Mater. 2017;29(5):1603864.   DOI
34 Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1(3):203-12.   DOI
35 Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, et al. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater. 2012;24(14):1868-72.   DOI
36 Nurunnabi MD, Khatun Z, Reeck GR, Lee DY, Lee Y-k. Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chem Commun. 2013;49(44):5079-81.   DOI
37 Liu T, Shi S, Liang C, Shen S, Cheng L, Wang C, et al. Iron oxide decorated $MoS_{2}$ nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano. 2015;9(1):950-60.   DOI
38 Li Z, Wong SL. Functionalization of 2D transition metal dichalcogenides for biomedical applications. Mater Sci Eng C. 2017;70:1095-106.   DOI
39 Duch MC, Budinger GRS, Liang YT, Soberanes S, Urich D, Chiarella SE, et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011;11(12):5201-7.   DOI
40 Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun. 2014;5:4458.   DOI
41 Wood JD, Wells SA, Jariwala D, Chen K-S, Cho E, Sangwan VK, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014;14(12):6964-70.   DOI
42 Tran VT, Kim J, Tufa LT, Oh S, Kwon J, Lee J. Magnetoplasmonic nanomaterials for biosensing/imaging and in vitro/in vivo biousability. Anal Chem. 2017;90(1):225-39.   DOI
43 Saitoh Y, Terada N, Saitoh S, Ohno N, Jin T, Ohno S. Histochemical analyses and quantum dot imaging of microvascular blood flow with pulmonary edema in living mouse lungs by "in vivo cryotechnique". Histochem Cell Biol. 2012;137(2):137-51.   DOI
44 Hainfeld JF, Smilowitz HM, O'Connor MJ, Dilmanian FA, Slatkin DN. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine. 2013;8(10):1601-9.   DOI
45 Bauer LM, Situ SF, Griswold MA, Samia ACS. High-performance iron oxide nanoparticles for magnetic particle imaging-guided hyperthermia (hMPI). Nanoscale. 2016;8(24):12162-9.   DOI
46 Jeong Y, Na K. Synthesis of a gadolinium based-macrocyclic MRI contrast agent for effective cancer diagnosis. Biomater Res. 2018;22(1):17.   DOI
47 Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 2014;14(11):6414-7.   DOI
48 Lu SB, Miao LL, Guo ZN, Qi X, Zhao CJ, Zhang H, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt Express. 2015;23(9):11183-94.   DOI
49 Lee HU, Lee SC, Won J, Son B-C, Choi S, Kim Y, et al. Stable semiconductor black phosphorus (BP)@titanium dioxide ($TiO_{2}$) hybrid photocatalysts. Sci Rep. 2015;5:8691.   DOI
50 Zhang X, Yin J, Peng C, Hu W, Zhu Z, Li W, et al. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon. 2011;49(3):986-95.   DOI
51 Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN. Threedimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano. 2015;9(4):4636-48.   DOI
52 Hao J, Song G, Liu T, Yi X, Yang K, Cheng L, et al. In vivo long-term biodistribution, excretion, and toxicology of PEGylated transition-metal dichalcogenides $MS_{2}$ (M = Mo, W, Ti) nanosheets. Adv Sci. 2017;4(1):1600160.   DOI
53 Shao J, Xie H, Huang H, Li Z, Sun Z, Xu Y, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat Commun. 2016;7:12967.   DOI
54 Kramer GF, Ames BN. Oxidative mechanisms of toxicity of low-intensity near-UV light in Salmonella typhimurium. J Bacteriol. 1987;169(5):2259-66.   DOI
55 Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science. 1988;240(4857):1302-9.   DOI
56 Stierner U, Rosdahl I, Augustsson A, Kagedal B. UVB irradiation induces melanocyte increase in both exposed and shielded human skin. J Invest Dermatol. 1989;92(4):561-4.   DOI
57 Zhuang L, Wang B, Sauder DN. Molecular mechanism of ultraviolet-induced keratinocyte apoptosis. J Interf Cytokine Res. 2000;20(5):445-54.   DOI
58 Lee JH, Shin YC, Jin OS, Lee EJ, Han D-W, Kang SH, et al. Cytotoxicity evaluations of pristine graphene and carbon nanotubes in fibroblastic cells. J Korean Phys Soc. 2012;61(6):873-7.   DOI
59 Oliveira SF, Bisker G, Bakh NA, Gibbs SL, Landry MP, Strano MS. Protein functionalized carbon nanomaterials for biomedical applications. Carbon. 2015;95:767-79.   DOI
60 Shin YC, Song S-J, Shin D-M, Oh J-W, Hong SW, Choi YS, et al. Nanocomposite scaffolds for myogenesis revisited: functionalization with carbon nanomaterials and spectroscopic analysis. Appl Spectrosc Rev. 2017;53(2-4):129-56.
61 Shin YC, Lee JH, Kim MJ, Hong SW, Kim B, Hyun JK, et al. Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptidedecorated PLGA nanofiber matrices. J Biol Eng. 2015;9(1):22.   DOI
62 Song S-J, Shin YC, Lee HU, Kim B, Han D-W, Lim D. Dose- and timedependent cytotoxicity of layered black phosphorus in fibroblastic cells. Nanomaterials. 2018;8(6):408.   DOI
63 Brent JR, Savjani N, Lewis EA, Haigh SJ, Lewis DJ, O'Brien P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem Commun. 2014;50(87):13338-41.   DOI
64 Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tomanek D, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano. 2014;8(4):4033-41.   DOI
65 Sun Z, Xie H, Tang S, Yu XF, Guo Z, Shao J, et al. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew Chem. 2015;127(39):11688-92.   DOI
66 Zhang X, Zhang Z, Zhang S, Li D, Ma W, Ma C, et al. Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms. Small. 2017;13(32):1701210.   DOI
67 Gokhale R, Singh P. Blue luminescent graphene quantum dots by photochemical stitching of small aromatic molecules: fluorescent nanoprobes in cellular imaging. Part Part Syst Charact. 2014;31(4):433-8.   DOI
68 Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12(2):844-9.   DOI
69 Shang W, Zhang X, Zhang M, Fan Z, Sun Y, Han M, et al. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale. 2014;6(11):5799-806.   DOI