DOI QR코드

DOI QR Code

Synthesis and Crystal Structure of Lead Iodide in the Sodalite Cavities of Zeolite A (LTA)

  • Kim, Seok-Han (Department of Applied Chemistry, Kyungpook National University) ;
  • Lim, Woo-Taik (Department of Applied Chemistry, Andong National University) ;
  • Kim, Ghyung-Hwa (Pohang Accelerator Laboratory, Pohang University of Science and Technology) ;
  • Lee, Heung-Soo (Pohang Accelerator Laboratory, Pohang University of Science and Technology) ;
  • Heo, Nam-Ho (Department of Applied Chemistry, Kyungpook National University)
  • Published : 2006.05.20

Abstract

The positions of $PbI _2$ molecule synthesized into the molecular-dimensioned cavities of $\mid K_6 (Pb _4I_2)(PbI_2) _{0.67}-(H_2O)_2\mid [Si _{12}Al _{12}O _{48}]$-LTA have been determined. A single crystal of $\mid Pb _6\mid [Si _{12}Al _{12}O _{48}]$-LTA, prepared by the dynamic ion-exchange of $\mid Na _{12}\mid [Si _{12}Al _{12}O _{48}]$-LTA with aqueous 0.05 M $Pb _(NO _3)_2$ and washed with deionized water, was placed in a stream of flowing aqueous 0.05 M KI at 294 K for three days. The resulting crystal structure of the product $( \mid K_6 (Pb _4I_2)(PbI_2) _{0.67}(H_2O)_2\mid [Si _{12}Al _{12}O _{48}]$-LTA, a = 12.353(1) $\AA$) was determined at 294 K by single-crystal X-ray diffraction in the space group Pm3 m. It was refined with all measured reflections to the final error index $R_1$ = 0.062 for 623 reflections which $F_o$ > 4$\sigma$($F_o$). 4.67 $Pb ^{2+}$ and six $K^+$ ions per unit cell are found at three crystallographically distinct positions: 3.67 $Pb ^{2+}$ and three $K^+$ ions on the 3-fold axes opposite six-rings in the large cavity, three $K^+$ ions off the plane of the eight-rings, and the remaining one $Pb ^{2+}$ ion lies opposite four-ring in the large cavity. 0.67 $Pb ^{2+}$ ions and 1.34 $I^-$ ions per unit cell are found in the sodalite units, indicating the formation of a $PbI _2$ molecule in 67% of the sodalite units. Each $PbI _2$ (Pb-I = 3.392(7) $\AA$) is held in place by the coordination of its one $Pb ^{2+}$ ion to the zeolite framework (a $Pb ^{2+}$ cation is 0.74 $\AA$ from a six-ring oxygens) and by the coordination of its two $I^-$ ions to $K^+$ ions through six-rings (I-K = 3.63(4) $\AA$). Two additional $I^-$ ions per unit cell are found opposite a four-ring in the large cavity and form $Pb _2K_2I^{5+}$ and $Pb _2K_2I^{3+}$ moieties, respectively, and two water molecules per unit cell are also found on the 3-fold axes in the large cavity.

Keywords

References

  1. Bhatia, S. Zeolite Catalysis: Principles and Applications, CRCPress, Inc. Boca Raton, Florida, 1988; pp 1-2
  2. Heo, N. H.; Kim, H. S.; Lim, W. T.; Seff, K. J. Phys. Chem. B 2004, 108, 3168-3173 https://doi.org/10.1021/jp031137p
  3. Takahashi, K.; Miyahara, J.; Shibahara, Y. J. Electrochem. Soc.1985, 132(6), 1492-1494 https://doi.org/10.1149/1.2114149
  4. Heo, N. H.; Chun, C. W.; Park, J. S.; Lim, W. T.; Park, M.; Li, S.L.; Seff, K. J. Phys. Chem. B 2002, 106, 4578-4587 https://doi.org/10.1021/jp011839j
  5. Heo, N. H.; Park, J. S.; Kim, Y. J.; Lim, W. T.; Jung, S. W.;Seff, K. J. Phys. Chem. B 2003, 107, 1120-1128 and referencestherein https://doi.org/10.1021/jp0219348
  6. Heo, N. H.; Lim, W. T.; Kim, B. J.; Lee, S. Y.; Kim, M. C.; Seff,K. J. Phys. Chem. B 1999, 103, 1881-1889 https://doi.org/10.1021/jp982300x
  7. Heo, N. H.; Lim, W. T.; Seff, K. J. Phys. Chem. 1996, 100, 13725-13731 https://doi.org/10.1021/jp9602179
  8. Armand, P.; Saboungi, M.-L.; Price, D. L.; Iton, L.; Cramer, C.;Grimsditch, M. Physical Rev. Letters 1997, 79(11), 2061-2064 https://doi.org/10.1103/PhysRevLett.79.2061
  9. Condeles, J. F.; Martins, T. M.; dos Santos, T. C.; Brunello, C. A.;Mulato, M.; Rosolen, J. M. Journal of Non-Crystalline Solids 2004, 338-340, 81-85 https://doi.org/10.1016/j.jnoncrysol.2004.02.026
  10. Bennett, P. R.; Shah, K. S.; Dmitriev, Y.; Klugerman, M.; Gupta,T.; Squillante, M.; Street, R.; Partain, L.; Zentai, G.; Pavyluchova,R. Nucl. Instrum. Methods Phys. Res. A 2003, 505, 269-272 https://doi.org/10.1016/S0168-9002(03)01066-0
  11. Hamada, M. M.; Oliveira, I. B.; Armelin, M. J.; Mesquita, C. H.Nucl. Instrum. Methods Phys. Res. A2003, 505, 517-520 https://doi.org/10.1016/S0168-9002(03)01136-7
  12. Klintenberg, M. K.; Weber, M. J.; Derenzo, D. E. Journal of Luminescence 2003, 102-103, 287-290 https://doi.org/10.1016/S0022-2313(02)00511-2
  13. Shah, K. S.; Street, R. A.; Dmitriyev, Y.; Bennett, P.; Cirignano,L.; Klugerman, M.; Squillante, M. R.; Entine, G. Nucl. Instrum.Methods Phys. Res. A 2001, 458, 140-147 https://doi.org/10.1016/S0168-9002(00)00857-3
  14. Bhavsar, D. S.; Saraf, K. B. Material Chemistry and Physics 2003, 78, 630-636 https://doi.org/10.1016/S0254-0584(02)00195-5
  15. Ponpon, J. P.; Amann, M. Thin Solid Films 2001, 394, 277-283
  16. Tang, Z. K.; Nozue, Y.; Goto, T. Journal of The Physical Society of Japan 1992, 61(8), 2943-2950 https://doi.org/10.1143/JPSJ.61.2943
  17. Togashi, N.; Sakamoto, Y.; Ohsuna, T.; Terasaki, O. Materials Science and Engineering A 2001, 312, 267-273 https://doi.org/10.1016/S0921-5093(00)01869-4
  18. Heo, N. H.; Kim, H. S.; Lim, W. T.; Seff, K. J. Phys. Chem. B 2004, 108, 3168 https://doi.org/10.1021/jp031137p
  19. Lim, W. T.; Choi, S. Y.; Kim. B. J.; Kim, C. M.; Lee, I. S.; Kim, S.H.; Heo, N. H. Bull. Korean Chem. Soc. 2005, 26(7), 1090 https://doi.org/10.1007/s11814-009-0181-z
  20. Charnell, J. F. J. Crystal Growth 1971, 8, 291-294 https://doi.org/10.1016/0022-0248(71)90074-1
  21. Ronay, C.; Seff, K. J. Phys. Chem. 1985, 89, 1965-1970 https://doi.org/10.1021/j100256a030
  22. Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structures; University of Gottingen: Germany, 1997
  23. Cruz, W. V.; Leung, P. C. W.; Seff, K. J. Am. Chem. Soc. 1978,100, 6997-7003 https://doi.org/10.1021/ja00490a036
  24. Mellum, M. D.; Seff, K. J. Phys. Chem. 1984, 88, 3560-3563 https://doi.org/10.1021/j150660a036
  25. Doyle, P. A.; Turner, P. S. Acta Crystallogr., Sect. A 1968, 24, 390-397 https://doi.org/10.1107/S0567739468000756
  26. International Tables for X-ray Crystallography; Ibers, J. A.,Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England,1974; Vol. IV, pp 71-98
  27. Cromer, D. T. Acta Crystallogr. 1965, 18, 17-23 https://doi.org/10.1107/S0365110X6500004X
  28. International Tables for X-ray Crystallography; Ibers, J. A.,Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England,1974; Vol. IV, pp 148-150
  29. Leung, P. C. W.; Kunz, K. B.; Seff, K. J. Phys. Chem. 1975, 79, 2157-2162 https://doi.org/10.1021/j100587a020
  30. Handbook of Chemistry and Physics, 64thed.; Chemical RubberCo.: Cleveland, OH, 1983; pp F-170

Cited by

  1. Synthesis and Crystal Structure of Zinc Iodide in the Sodalite Cavities of Zeolite A (LTA) vol.28, pp.4, 2007, https://doi.org/10.5012/bkcs.2007.28.4.567
  2. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  3. Structural Study of Selenium Sorption Complex of Fully Dehydrated, Partially Ca2+-exchanged Zeolite A vol.33, pp.3, 2006, https://doi.org/10.22807/kjmp.2020.33.3.251
  4. Direct Imaging and Location of Pb2+ and K+ in EMT Framework-Type Zeolite vol.125, pp.11, 2006, https://doi.org/10.1021/acs.jpcc.1c00550