DOI QR코드

DOI QR Code

Evaluation of the dose distribution in Mapcheck using Enhanced Dynamic Wedge

Enhanced Dynamic Wedge를 사용한 Mapcheck에서의 선량분포 평가

  • Kang, Su-Man (Department of Radiation Oncology, Kosin University Gospel Hospital) ;
  • Jang, Eun-Sun (Department of Radiation Oncology, Kosin University Gospel Hospital) ;
  • Lee, Byung-Koo (Department of Radiation Oncology, Korea University Anam Hospital) ;
  • Jung, Bong-Jae (Department of Radiological Science, International University of Korea) ;
  • Shin, Jung-Sub (Department of Radiologic Technology, Sunlin college) ;
  • Park, Cheol-Woo (Department of Radiologic technology Dong-eui Institute of Technology)
  • 강수만 (고신대학교 복음병원 방사선종양학과) ;
  • 장은성 (고신대학교 복음병원 방사선종양학과) ;
  • 이병구 (고려대 안암병원) ;
  • 정봉재 (한국국제대학교 방사선학과) ;
  • 신정섭 (선린대학교 방사선과) ;
  • 박철우 (동의과학대학 방사선과)
  • Received : 2012.07.18
  • Accepted : 2012.10.16
  • Published : 2012.10.30

Abstract

Intensity Modulated Radiotherapy (IMRT) is increasing its use recently due to its benefits of minimizing the dose on surrounding normal organs and being able to target a high dose specifically to the tumor. The study aims to measure and evaluate the dose distribution according to its dynamic changes in Mapcheck. In order to verify the dose distribution by EDW angle($10^{\circ}$,$15^{\circ}$,$20^{\circ}$,$25^{\circ}$,$30^{\circ}$,$45^{\circ}$,$60^{\circ}$), field size (asymmetric field) and depth changes (1.5 cm, 5.0 cm) using IMRT in Clinac ix, a solid phantom was placed on the Mapcheck and 100MU was exposed by 6 MV, 10MV X-ray. Using a 6MV, 10MV energy, the percentage depth dose according to a dynamic changes at a maximum dose depth (1.5 cm) and at 5.0 cm depth showed the value difference of maximum 0.6%, less than 1%, which was calculated by a treatment program device considering the maximum dose depth at the center as 100%, the percentage depth dose was in the range between 2.4% and 7.2%. Also, the maximum value difference of a percentage depth dose was 4.1% in Y2-OUT direction, and 1.7% in Y1-IN direction. When treating a patient using a wedge, it is considered that using an enhanced dynamic wedge is effective to reduce the scattered dose which induces unnecessary dose to the surroundings. In particular, when treating a patient at clinic, a treatment must be performed considering that the wedge dose in a toe direction is higher than the dose in a heel direction.

세기조절방사선치료(intensity modulated radiation therapy ; IMRT)는 주변 정상장기 선량을 최소화하면서 종양에 집중적으로 고선량을 조사할 수 있는 장점으로 인하여 최근 그 사용이 급격히 증가하고 있다. 기능강화 동적쐐기 (enhanced dynamic wedge; EDW) 사용 시 기하학적 변화에 따른 Mapcheck에서의 선량분포를 측정 평가하고자 한다. Clinac ix에서 IMRT를 이용하여 EDW angle($10^{\circ}$, $15^{\circ}$, $20^{\circ}$, $25^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$), field size(asymmetric field), depth 변화(1,5 cm, 5 cm)에 따른 선량분포를 검증하기 위해 Mapcheck위에 고체팬텀을 올려놓고 6 MV, 10MVX-ray로 100MU를 조사하였다. 6MV, 10MV의 에너지를 사용하여 기하학적변화에 따라 최대선량깊이(1.5 cm)와 5 cm 깊이에서 심부 선량백분율(percentage depth dose; PDD)은 치료계획장치에서 계산한 값의 차이가 최대 0.6%로 1%미만의 값으로 나타났다. 심부선량백분율은 조사야 중앙에서 최대선량깊이의 선량을 100%로 보았을 경우, 2.4%에서 7.2%의 범위에 있다. 또한 심부선량백분율 차이의 최대값은 Y2-OUT 방향에서 4.1%로 나타났고 Y1-IN 방향으로 1.7%로 나타났다. 동적쐐기를 사용하여 환자를 치료할 경우, 조사야 주변부의 불필요한 피폭을 유발하여 산란되는 선량을 줄이기 위하여 기능 강화 동적쐐기를 사용하는 것이 바람직할 것으로 사료된다. 특히 임상에서 환자를 치료할 경우, 쐐기의 toe방향 선량이 heel방향 선량보다 높다는 것을 염두에 두고 치료를 수행해야 할 것으로 사료된다.

Keywords

References

  1. 이정우, 홍세미, 김연래 외 6명 : 세기변조방사선치료 선량 분포 확인을 위한 2차원적 이온전리함 배열의 특성분석, 의학물리, Vol. 17, No. 3, 2006
  2. 강민영, 김연래, 박병문 외 2명 등 : 세기변조방사선치료의 품질관리를 위한 이온전리함 매트릭스의 유용성 고찰, 대한방사선치료학회지, Vol. 19, No. 2, 2007
  3. Charles Travis Webb Analysis of Off-Axis Enhanced Dynamic Wedge Dosimetry using a 2D DiodeArray, Sciences and Humanities, P.53, 2008
  4. Liu, Lief, McCullough, Measuring dose distributions for enhanced dynamic wedges using a multi chamber detector array, Medical Physics college, September p.24, 1997
  5. M.N.Anjum, A.Qadir, M.Afzal, Dosimetric evaluation of a treatment planning system using pencil beam convolution algorithm for enhanced dynamic wedge with symmetric and asymmetric fields, Iran.J.Radiat.Res, p.5, 2008
  6. Charles Travis Webb, DR. Thomas H Robertson : Analysis of Off-Axis Enhanced Dynamiac Wedge Dosimetry using a 2D Diode Array, Science and Humanities, 2008
  7. M.N.Anjum, A.Qadir, M.Afzal, Dosimetric evaluation of a treatment planning system using pencil beam convolution algorithm for enhanced dynamic wedge with symmetric and asymmetric fields, Iran.J.Radiat.Res, 2008
  8. S.J. Thomas and K.R. Foster, " Radiotherapy treatment planning with dynamic wedges - An algorithm for generating wedge factors and beam data," Phys.Med. Vol. 40, No. 1, pp.1421-1433, 1995 https://doi.org/10.1088/0031-9155/40/9/003
  9. H. H. Liu and E. C. McCullough, " Calculating dose distributions and wedge factors for photon treatment fields with dynamic wedges based on a convolution/superposition method, " p..25, Phys.Med.
  10. S.V. Spirou and C.S. Chui, " Generation of arbitrary intensity profiles by using dynamic jaws or multileaf collimators, " Phys Med. Vol. 21, pp.1031-1041, 1994. https://doi.org/10.1118/1.597345
  11. J. Thomas and K.R. Foster, " Radiotherapy treatment planning with dynamic wedges - An algorithm for generating wedge factors and beam data," Phys.Med. Vol. 40, pp.421-1433, 1995

Cited by

  1. Dose Distribution of Wedge filter by Dose Rate in LINAC vol.9, pp.5, 2015, https://doi.org/10.7742/jksr.2015.9.5.323