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Purpose : Recently, the Recon Challenge at the 2009 ISMRM workshop on Data
Sampling and Image Reconstruction at Sedona, Arizona was held to evaluate
feasibility of highly accelerated acquisition of time resolved contrast enhanced MR
angiography. This paper provides the step-by-step description of the winning results
of k-t FOCUSS in this competition.

Materials and Methods : In previous works, we proved that k-t FOCUSS algorithm
successfully solves the compressed sensing problem even for less sparse cardiac cine
applications. Therefore, using k-t FOCUSS, very accurate time resolved contrast
enhanced MR angiography can be reconstructed. Accelerated radial trajectory data
were synthetized from X-ray cerebral angiography images and provided by the
organizing committee, and radiologists double blindly evaluated each reconstruction
result with respect to the ground-truth data.

Results : The reconstructed results at various acceleration factors demonstrate that
each components of compressed sensing, such as sparsifying transform and
incoherent sampling patterns, etc can have profound effects on the final
reconstruction results.

Conclusion : From reconstructed results, we see that the compressed sensing
dynamic MR imaging algorithm, k-t FOCUSS enables high resolution time resolved
contrast enhanced MR angiography.

Index words :  Time resolved contrast enhanced MR angiography
Compressed sensing
k-t FOCUSS
Karhunen-Loeve Transform
Principal component analysis

JKSMRM 14:10-20(2010)

'Bio-Imaging & Signal Processing Lab, Dept. Bio/Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST)

“Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine

Received; December 7, 2009, revised; February 10, 2010, accepted; March 1, 2010

Corresponding author : Jong Chul Ye, Ph.D., Bio-Imaging & Signal Processing Lab, Dept. Bio/Brain Engineering, Korea Advanced
Institute of Science & Technology (KAIST), 373-1 Guseong-dong Yuseong-gu, Daejon 305-701, Korea.
Tel. 82-42-350-4320 Fax. 82-42-350-4310 E-mail: jong.ye@kaist.ac.kr

-10-



High Resolution Time Resolved Contrast Enhanced MR Angiography Using k-t FOCUSS

Introduction

Angiography is an imaging technique to depict
structures of vessels and blood flow in arteries and
veins. The main interest of this technique is to find the
disorder of blood vessels such as stenosis, occlusion, or
aneurysms.

X-ray angiography is a standard tool for blood vessel
diagnosis. For X-ray angiography, contrast agent must
be injected into the patient using a catheter. Then, to
obtain blood vessel images, digital subtraction
angiography (DSA) is generally used which subtracts a
subsequently acquired image without contrast agent
from images with contrast agent. However, the
procedure is quite invasive.

In order to resolve these issues, there have been
intensive researches to exploit other imaging modalities
such as CT or MRI in angiography. Currently, CT
angiography (CTA) using iodine contrast agent is most
widely used as a replacement of the conventional X-ray
angiography (1). However, CTA is considered harmful
for routine use due to radiation risk (2). In contrast, MR
angiography (MRA) is safer (3). Contrast enhanced
MRA (CE-MRA) uses gadolinium as a contrast agent.
Gadolinium reduces T1 so that the signal intensity of
blood vessel filled with gadolinium becomes high.
However, it is generally accepted that the resolution of
CE-MRA is poorer than that of CTA due to slow
acquisition time. Since MR acquisition is based on
Fourier transform, the number of measured k-space
data should satisfy Nyquist sampling limit to avoid
aliasing artifacts, which usually results in trade-off
between spatial and temporal resolution in MRA.

Recently, several novel approaches have been
developed to reduce scanning time while preserving
image qualities. For example, parallel imaging methods
such as sensitivity encoding (SENSE) (4), simultaneous
acquisition of spatial harmonics (SMASH) (5),
generalized autocalibtrating partially parallel
acquisitions (GRAPPA) (6) accelerate data acquisition
time by obtaining a subset of k-space data and resolve
aliasing artifacts by exploiting the diversity of coil
sensitivity. However, it was reported in (7, 8) that an
acceptable image quality can be generated at only
limited acceleration factor due to the amplification of
noise.

Our approach is different from conventional
algorithms thanks to the use of “compressed sensing”
theory (9, 10). According to compressed sensing theory,
perfect reconstruction is possible even from sampling
rates dramatically smaller than the Nyquist sampling
limit by solving an /; minimization problem, as long as
the non-zero spectral signal is sparse and the samples
are obtained with an incoherent basis (10). Therefore,
compressed sensing may be one of the most suitable
approaches for CE-MRA, since the temporal variation
of CE-MRA is usually very sparse in spatio-temporal
domain. Recently, we have developed compressed
sensing based dynamic MR imaging algorithm called k-
t FOCUSS (11, 12). k-t FOCUSS has been successfully
applied to cardiac cine imaging. Hence, applying k-t
FOCUSS to CE-MRA, great performance can be
expected thanks to its spatio-temporal sparsity.
Furthermore, by incorporating k-t FOCUSS in radial
trajectory using golden trajectory (13), the advantage of
radial trajectory can be exploited as well. In order to
make k-t FOCUSS more effective, the temporal basis
should be chosen judiciously such that the transformed
signal can be effectively sparsified. We found that
principal component analysis (PCA) provides a suitable
basis. Experimental results using the data provided by
Recon challenge at 2009 ISMRM workshop for Data
Sampling and Image Reconstruction show that an
accurate reconstruction can be achieved from very
sparse measurements.

Even though the results presented in this
communication is based on simulated MRA data from
X-ray cerebral angiography, the insight we obtained
from this exercise may provide a promising direction in
CE-MRA.

Methods

k-t FOCUSS has been developed for high spatio-
temporal resolution dynamic MR imaging such as
cardiac cine imaging (11, 12). The basic concept for k-t
FOCUSS comes from compressed sensing theory
which tells us that the accurate reconstruction is
possible using only limited number of measurements if
the unknown image can be sparsely represented. Here,
the essential requirement for the success of compressed
sensing is the “sparsity” of images. Time resolved CE-
MRA is therefore suitable for compressed sensing
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framework since the difference between adjacent
frames is only restricted inside of vessels which are
relatively stationary and sparse. Furthermore, the
temporal variation of contrast agent is often slowly
varying, which can be effectively sparsified in
appropriate basis. According to compressed sensing
theory, those very sparse signals can be very accurately
reconstructed by solving a computationally feasible I;
minimization problem as follows:

min [ 2|
subjectto v - F&p |, < ¢, (1]

where p, ¥, F, and v represent a vector stacked by
unknown sparse signal, temporal sparsifying transform,
Fourier transform from image space to k-space, and a
vector stacked by k-t measurements, respectively. Here
€, denots the noise level. In order to solve Eq. [1], k-t
FOCUSS finds:

lon+1: qun/ [2]

by iteratively solving re-weighted I, minimization
problem as follows:

min || g, [/ ,
subjectto ||[v - F¥W,g, 1l , < €, [3]
where W, ; is updated as:

|pn+1(1)|p 0 0

0 2) [P - 0
: IP,H:l( )| o 12<p<1. [4]

n+l =

0 0 eI

In (11), it was proved that this algorithm solves I;
minimization problem by setting p = 0.5. If we set
0.5<p<1, Eq. [3] will solve I; minimization for g<1,
which guarantees a sparser global minimization.
However, since [, (g<1) is not a convex minimization,
the solution can be fallen to local minimization. The k-t
FOCUSS algorithm can be then represented as:

Pn.1= 6, FHFIFT @, WHFT 4 Al) v, [5]

where 6 ,=W,WH and A is a regularization
parameter. If we increase A, Eq. [5] obtains sparser
solution but the data fidelity term in Eq. [3] becomes
less important. Usually, A<1 provides good image
qualities.

Note that there exist several options to be optimized
in k-t FOCUSS. For example, the specific choice of
sparsifying transform, sampling patterns and etc. These
issues will be discussed in detail in the sequel.

Temporal Sparsifying Transform

As mentioned in previous section, the "sparsity” of
unknown signal is an essential condition for
compressed sensing reconstruction. In (11, 12), Fourier
transform (FT) along temporal direction is used to
sparsify cardiac cine images. FT tends to sparsify a
signal especially when signal shows sinusoidal pattern.
Therefore, when the object has periodic motion (for
example moving heart), temporal FT can effectively
sparsify images.

However, even if the signal does not have an obvious
periodic pattern, the Fourier spectrum is mostly

Masking
e

Fig. 1. Time resolved CE-MRA can
be spasified using FT or KLT. Unlike
FT, KLT 1is data dependent
transform so that KLT bases should
be obtained from given data set. The
proposed method first applied k-t
FOCUSS with temporal FT for initial
reconstruction. Then, by threshold-
ing the temporal averaged image, a
mask is obtained and KLT bases are
estimated from the temporal
variation at the mask location. After
J KLT, the coefficients are usually

very sparse.
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focused at the low frequency when the signal varies
slowly. Time resolved CE-MRA often has such smooth
temporal variation so that FT along temporal direction
works well as a sparsifying transform. To see the
sparsity in Fourier spectrum, x-f image and f-axis plot
at one x-point are illustrated with original x-t image and
temporal variation at the same point in Figure 1. The
majority of energy is concentrated at a few low
frequencies since the signals smoothly vary.

Basically, k-t FOCUSS is based on compressed
sensing and the sparsifying transform ¥ does not need
to be constrained to FT. If there are other bases to
represent images more sparsely, those bases will be
more effective for k-t FOCUSS reconstruction. Based
on this idea, we already used principal component
analysis (PCA) to find the most sparsifying transform
for functional MRI (11). The resultant transform is
often called Karhunen-Loeve transform (KLT) (14). KLT
is well-known as an optimal energy compaction
transform for signals (14). Hence, for non-periodic
signal such as time resolved CE-MRA, KLT can be a
more suitable sparsifying transform than FT.

Unlike the FT, KLT is a data dependent transform.
More specifically, let o, denote a random vector
spanning time series from t; to ty.

Oy = [d(k/tl)v o'(k/tz)«"'/ d(k/tN)]T [6]

In general, the covariance matrix C of 6, can be
expanded as follows:

N
C = Hoo{'] = IZ n&¥y, [7]
-1

where {71};\:1

the corresponding orthonormal eigenvectors of C (14).

and { ¥ Z}ll\i , are the eigenvalues and

Then, the original signal o, can be represented as
follows (14):

N

0'k= ZZ ,OITZ, [8]
-1

where

P =<0, ¥ >. El

The eigenvectors {ZFZ};ZI and coefficients {pl}fil
correspond to the sparsifying transform ¥ and
unknown sparse signal ¢ in Eq. [1], respectively.

The KLT provides a separation of the randomness
and the time variation in the signal oy . In particular, the
randomness is summarized in the sequence {pl}f\i )
while the time variation in the process is embodied in
the deterministic functions {¥ l}ll\i , (14). Therefore, if
each pixel of CE-MRA has similar behavior along
temporal direction, we can represent the temporally
varying images very sparsely with a small amount of

Cartesian trajectory

Kk, Fully sampled

T

>

low frequency I

Fig. 2. Randomly sampled Cartesian
and radial trajectories are illustrated
with reconstructed images using
conventional methods in (a) and
(o), respectively.

|
Zero-padded IFFT

Radial trajectory

K,

t=3

Filtered back projection
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randomness.

However, estimating KLT bases is a very
underdetermined problem when the data are highly
accelerated. Dealing with this problem, we
approximate KLT bases using only a partial data set.
For example, in the Cartesian trajectory, as shown in
Figure 2 (a), the fully sampled low frequency k-t data
can be used to estimate the covariance matrix C. More
specifically, let V be a fully sampled k-t data set in low
frequency region:

v(kyty) vk ty) o vk th)

v(ky,ty) V(K ty) o+ UKy ty)

V= , [10]

v(ky ty) o[k ty) - O(Kyty)

where M and N are the total number of fully sampled
low frequency k-data and the total number of time
frames, respectively. Then, the covariance matrix C is
obtained by:

C = VVH [11]

Finally, the KLT bases {lpl}f\il can be estimated
using eigenvector decomposition of C as in Eq. [7].
Here, it is important to note that even though KLT
bases are obtained from low spatial resolution images,
the temporal changes are not smoothed at all because
the resultant basis is complete in CN and we can
represent any temporal variation in CN with linear
combination of KLT bases. Therefore, the only concern
about the approximated KLT bases is if the unknown
signal can be represented with sparse coefficients p. We
confirmed that the resultant coefficients are sparse
enough in the following experiments. This is one of the
main differences from partially separable function
(PSF) approach (15), where only [ significant principle
components are used for temporal transform by
assuming that the rank of the unknown x-t images is L
However, in real cases, it is hard to know the rank of
the unknown x-t images a priori. In contrast, in our
approach, the bases are complete and the sparse non-
zero coefficients are obtained using I minimization.

In radial trajectory, since we do not have fully
sampled low frequency measurements on the same
coordinates along time, a novel method should be
considered. In this paper, initial dynamic images are

reconstructed with k-t FOCUSS using FT. Then, we set
the mask M that may correspond to the vessel area.
The mask M is determined by a simple thresholding:

M(X)={1, if | o(x) '| >r [12]
0, otherwise,

where ¢ and I represent temporal average of initial
k-t FOCUSS results and specified thresholding value,
respectively. Temporally varying signals on the non-
zero mask are then extracted to estimate the temporal
covariance matrix. Then, KLT bases are obtained by
eigen-decomposition as described above. Figure 1
briefly summarizes these steps and demonstrates the
sparse signals after KLT. Through this process, the
temporal variation due to streaking artifact patterns can
be excluded in determining KLT bases.

Incoherent Sampling

In (11, 12), we achieved successful performance of k-t
FOCUSS in Cartesian trajectory in cardiac cine imaging
which is usually less sparse than MRA. Meanwhile,
several high performance algorithms, such as highly-
constrained back-projection (HYPR) (16) or iterative
HYPR (I-HYPR) (17), use radial trajectory for MRA.
Therefore, one may wonder which trajectory is more
suitable for MRA. Since both trajectories have
incoherent sampling basis with respect to image space,
compressed sensing framework works for both cases.
Figure 2 (a) and (b) show the artifact patterns in
Cartesian and radial trajectories, respectively. The
artifacts are spread over whole image space like noise
pattern and this proves the incoherency of sampling
basis in both trajectories.

However, due to differences in Cartesian and radial
trajectories, there exists pros and cons for each method.
For example, in radial trajectory, spatial resolution is
mainly determined by imaging field of view (FOV) and
there is smaller trade off between spatial resolution and
number of views in contrast to the Cartesian trajectory.
Furthermore, due to the oversampled k-space region,
radial trajectory is more robust to motion artifacts (18)
and more accurate contrast reconstruction is possible.
Moreover, using golden ratio trajectories (13), we can
distribute sampling trajectories without overlap on
different time points. More specifically, by specifying
the angle increment between consecutive views with
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111.25°, the sampling incoherency can be preserved
for arbitrary choices of the number of views and time
frames for already acquired data set. From a
computational complexity point of view, Cartesian
trajectory is, however, more advantageous than radial
trajectory. Specifically, the reconstruction can be done
using fast Fourier transform (FFT), whereas radial
trajectory requires computationally expensive
projection/back-projection or gridding. Another issue
comes from using KLT. As already explained in the
perviovs section, radial trajectory require initial
reconstruction to obtain KLT bases, whereas Cartesian
trajectory does not need the initial reconstruction since
fully sampled low frequency k-t data can be used for
KLT basis estimation.

Up-Sampling

Increasing imaging FOV makes the resultant image
sparser. According to Fourier slice theorem, each read-
out data in radial trajectory corresponds to the Fourier
transform of a sinogram obtained from projection of an
image. Therefore, inverse Fourier transform of one
read-out corresponds to the sinogram of original image.
Hence, just zero-padding at both ends of each sinogram
with arbitrary size, imaging FOV can be extended
without any distortion of original image contents. The
zero-padding scheme is a quite common technique in
signogram-based reconstruction (19). It is usually
employed for correct implementation of discretized
filtered back projection. However, in our approach, we
employed this zero-padding scheme for sparser
representation of the unknown images.

Actually, when the number of views is close to
Nyquist sampling criteria, this step is not necessary to
avoid aliasing artifacts. However, if the number of
views is very limited so that the empty k-space is
estimated with small number of measurements,
estimation error of k-space data can result in aliasing
artifact in image domain especially when the size of
FOV is similar to the size of image contents. In this
case, employing up-sampling scheme mentioned above,
image quality can be greatly improved without serious
aliasing artifacts, as will be demonstrated later.

Materials

The accelerated simulated data were provided at the

"Recon Challenge” of 2009 ISMRM workshop on Data
Sampling and Image Reconstruction (http://fwww.
ismrm.org/workshops/Data_09/recon.htm). Data were
simulated from X-ray cerebral angiography. X-ray data
were collected 3 frames per second, with 2048 in-plane
resolution, for a total of 8 seconds (24 collected frames)
which span wash-in to wash out of injected bolus. The
images were blurred to 512 resolution, and linearly
interpolated in time between frames to create a total of
512 time frames. Coil sensitivity maps obtained from
an axial slice through a water phantom using an 8
channel head coil were superimposed on the image to
create 8 coil images. Independent noise was added to
each channel. From each temporal image, one read-out
was obtained with size of 512 in radial trajectory so
that the given total number of simulated k-data was
512 x512. Here, the time interval between each
interpolated time frame corresponds to TR in real MR
acquisition. Then, reconstruction was performed at 12
time points corresponding to the 39, 79, 118, 157, 197,
236, 275, 314, 354, 393, 432, 472 nd time frames.

In radial acquisition, the view order was based on the
golden ratio whose angle increment between
consecutive views is 111.25° (13). In this scheme, there
was no overlap of trajectories in 512 views and we
could choose arbitrary number of views to reconstruct
each time frame since any consecutive views are
broadly distributed over k-space as described in (13). In
this paper, the experiments were conducted at 12- and
51.2-fold acceleration. At 12-fold acceleration, all of the
given 512 views were used for reconstruction.
Specifically, k-space data at different time were
aggregated with 39 or 40 sized windows whose centers
were placed at target time frames, such as the 39, 79,
118, 157, 197, 236, 275, 314, 354, 393, 432, 472 nd. The
window size 39 or 40 was determined by a time
distance between current target frame and previous
target frame. For 51.2-fold acceleration, we simply used
10 views for each time frame. From these data sets, the
reconstruction was performed for each coil using k-t
FOCUSS with various compressed sensing parameters.
For up-sampling, we generated 1024 sized read-out by
padding zeros at both ends of each 512 sized sinogram
and the up-sampling factor was 2. For comparison of
the performance in different trajectories, we
additionally acquired randomly sampled data in
Cartesian trajectory. Here, the acceleration factor was
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12. Final results were obtained by root sum of squares
of 8-coil images. For the quantitative evaluation of each
result, the interpolated X-ray images corresponding to
39, 79, 118, 157, 197, 236, 275, 314, 354, 393, 432, 472
nd time frames are multiplied by coil sensitivity maps,
and the root-square sum of squared images of 8-coils
are used as a ground truth. Our winning result at the
Recon Challenge was the result reconstructed using up-
sampling and KLT at 12-fold acceleration factor.

Experimental Results

For the effect of different parameters, we illustrated
radial k-t FOCUSS results using FT with no up-
sampling, FT with up-sampling, and KLT with up-
sampling together with ground truth in Figure 3. For
fair comparison, the pixel values were equally scaled
with fixed minimum and maximum values for different
methods. Here, the acceleration factor was 12. When
there was no up-sampling, the overall image quality
was poor with streaking and aliasing artifacts as
indicated by arrows. In contrast, after up-sampling, FT
and KLT results illustrate no such artifacts. The
magnified images help to see the detailed structures
and contrast changes around vessels. It is observed that
KLT results have the finest vessel structures.

For quantitative comparison of FT and KLT methods,
we calculated mean square errors (MSE) at 51.2 and 12-

fold acceleration factors in Figure 4. When acceleration
factor is low, both methods show comparable MSE.
However, when acceleration factor is high, the
improvement in KLT result is significant. For further
analysis about temporal resolution, temporal variations
of averaged pixel values within specified 5 x5 window
were plotted together with true values and
corresponding errors in Figure 5 for 12 and 51.2-fold
accelerations. Similar to MSE results, when the
acceleration factor is low, both results correctly follow

04 ‘ ‘ ‘
=@=FT 51.2 x accel.
0.35 == KLT 51.2 x accel. |
== FT 12 x accel.
03 = KLT 12 X accel. ||

2 4 6 8 10 12
frame number

Fig. 4. Mean square error (MSE) was plotted for FT and
KLT at 51.2 and 12-fold acceleration. KLT shows
significantly reduced MSE especially at high acceleration
compared to FT.

Ground truth

Fig. 3. Two different time frames
representing spread of bolus are
illustrated to compare the perfor-
mance of FT without up-sampling,
FT with up-sampling, and KLT with
up-sampling. The acceleration factor

F+

was 12 and up-sampling factor was
2. Without up-sampling, streaking
and aliasing artifacts are visible as
indicated by arrows. Up-sampling
improves the image quality. Using
KLT, further improved images can
be reconstructed. KLT results show
the finest vessel structure in
magnified images.
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the true values, whereas at high acceleration KLT
result shows better performance.

In order to compare the performance in Cartesian
and radial trajectories, we have conducted comparative
studies in Figure 6. Here, the acceleration factor was 12
and KLT was used as a sparsifying transform for both
trajectories. Figure 6 (a) shows one time frame. The
images of both trajectories look nice without aliasing or
streaking artifacts but in magnified version, it is
observed that radial trajectory has finer vessel
structures. Figure 6 (b) and (c) again confirm that radial
results are better than Cartesian results by plotting
spatial and temporal variation.

Finally, Table 1 briefly summarizes k-t FOCUSS
using FT and KLT in Cartesian and radial trajectory in
terms of reconstruction time and MSE. Reconstruction
time was measured for each coil by CPU time on Xeon
3 GHz Linux platform with 4 GB RAM using Matlab
7.0.4. Then, MSE was calculated for each time frame.
Here, the acceleration factor was 12 and this sampling
ratio was enough to directly estimate KLT bases in

Cartesian trajectory. Hence, the reconstruction time
was similar in using FT and KLT in Cartesian
trajectory. Similar to the radial trajectory, KLT result
with Cartesian sampling shows smaller MSE than FT
result. Next, temporal FT without up-sampling in radial
trajectory shows very poor performance. By using up-
sampling by factor of 2, the MSE value was
significantly reduced. If KLT is used for temporal
transform, the results can be further improved. Note

Table 1. Comparison of various versions of k-t FOCUSS in terms
of reconstruction time and MSE for each coil. The last line shows
the winning combination at ISMRM workshop

k-t FOCUSS Parameters

Sampling  Sparsifying Up- Recon. Time  MSE

Trajectory Transform Sampling

Cartesian FT no 1 min 22 sec 1.9132
Cartesian KLT no 1 min 24 sec 1.7897
Radial FT no 3 min 37 sec 4.3863
Radial FT 2-fold 18 min 40 sec 0.8137
Radial KLT 2-fold 37 min 38 sec  0.7470

Fig. 5. Temporal variation of
averaged pixel values within the
specified window is plotted for FT
and KLT at 12 and 51.2-fold
accelerations. At 12-fold accelera-
tion, both methods show accurate
time variations. However, at 51.2-
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Cartesian trajectory

Radial trajectory

—True —True
30 -0 y 30 - = —Radlal trajectory
——Error ——Error
25
] ]
=2 =) 20
g g
=2 =T
=} o
10
5
0
100 200 _300 400 500
y-axis
b
t-axis plot - 5
— True m—Trug
50 = = = Cartesian trajectory 50 = = = Radlal trajectory
E s Errof E = Error
E=] - =
> 30 > 20
© [
g. 20 g- 20
£ 5
10 10
I
e —— |
L 2 4 8 10 12 e 2 4 10 12

]
frame number

[ 8
frame humber

C

Fig. 6. k-t FOCUSS with KLT was implemented in Cartesian and radial trajectories at 12-fold acceleration and both
resultant images are compared in (Q). Both results look similar but in magnified version radial trajectory shows finer
vessel structures. Similarly, in y-axis and t-axis plot in () and (C), radial trajectory shows more accurate results.

that the problem of up-sampling is longer time for
reconstruction. This is due to large memory
requirement. Furthermore, since KLT basis should be
estimated after initial reconstruction, KLT in radial
trajectory requires additional computational time.

Conclusion

This paper described the k-t FOCUSS algorithm that
won the Recon Challenge at 2009 ISMRM Data
Sampling and Image Reconstruction workshop. Since

MRA is usually composed of very sparse vessel
structures, it is a very suitable application of
compressed sensing. In this paper, we proved that k-t
FOCUSS that has been successfully applied to cardiac
cine imaging is also effective in time resolved CE-MRA.
Several sparsifying transforms and various options
have been compared. Through various experiments,
we confirmed that KLT with radial trajectory with up-
sampling outperforms other combinations of
sparsifying transforms, sampling patterns, etc.

- 18-



High Resolution Time Resolved Contrast Enhanced MR Angiography Using k-t FOCUSS

Acknowledgement

The authors would like to thank Prof. Jim Pipe and
Nick Zwart in Barrow Neurological Institute in
Arizona, USA for providing the data.

References

1.B. Urban, L. Ratner, and E. Fishman, Three-dimensional
Volume-rendered CT Angiography of the Renal Arteries and
Veins: Normal Anatomy, Variants, and Clinical Application 1,
Radiographics, 2001;21(2):373-386

2.P. Zanzonico, L. Rothenberg, and H. Strauss, Radiation
Exposure of Computed Tomography and Direct Intracoronary
Angiography Risk has its Reward, Journal of the American
College of Cardiology, 2006;47(9):1846-1849

3.V. S. Lee, Cardiovascular MRI: Physical principles to practical
protocols. Philadelpia: Lippincott Williams & Wilkins, 2006.

4.K. P. Pruessmann, M. Weigher, M. B. Scheidegger, and P.
Boesiger, SENSE: Sensitivity encoding for fast MRI, Magn.
Reson. Med, 1999;42(5):952-962

5.D. K. Sodickwon and W. J. Manning, Simultaneous
acquisition of spatial harmonics (SMASH): fast imaging with
radiofrequency coil arrays, Magn. Reson. Med, 1997;38(4)591-
603.

6.M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka,
V. Jellus, J. Wang, B. Kiefer, and A. Haase, Generalized
autocalibrating partially parallel acquisitions (GRAPPA),
Magn. Reson. Med, 2002;47(6):1202-1210

7.D. Sodickson, C. McKenzie, W. Li, S. Wolff, W. Manning,
and R. Edelman, "Contrast-enhanced 3D MR Angiography
with Simultaneous Acquisition of Spatial Harmonics: A Pilot
Study 1, Radiology, 2000;217(1):284-289

8.G. Wilson, R. Hoogeveen, W. Willinek, R. Muthupillai, and J.
Maki, "Parallel Imaging in MR Angiography,” Topics in
Magnetic Resonance Imaging, 2004;15(3):169-185.

9.M. Lustig, D. Donoho, and J. Pauly, Sparse MRI: The
application of compressed sensing for rapid MR imaging,
Magn. Reson. Med, 2007;58(6):1182-1195

10.D. L. Donoho, Compressed sensing, IEEE Trans. on
Information Theory, 2006;52(5):1289-1306

11.H. Jung, J. C. Ye, and E. Y. Kim, Improved k-t BLAST and k-t
SENSE using FOCUSS, Physics in Medicine and Biology,
2007;52(11)3201-3226

12.H. Jung, K. Sung, K. S. Nayak, E. Y. Kim, and J. C. Ye, k-t
FOCUSS: a general compressed sensing framework for high
resolution dynamic MRI, Magn. Reson. Med, 2009;61:103-116

13.S. Winkelmann, T. Schaeffter, T. Koehler, H. Eggers, and O.
Doessel, An optimal radial profile order based on the Golden
Ratio for time-resolved MRI, IEEE Transactions on Medical
Imaging, 2007;26(1):68-76

14.H. V. Poor, An Introduction of Signal Detection and
Estimation, 2nd ed. New York: Springer-Verlag, 1994.

15.Z. Liang, Spatiotemporal Imaging with Partially Separable
Functions, in 4th IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, 2007, p. 988-991

16.C. Mistretta, O. Wieben, ]J. Velikina, W. Block, J. Perry, Y.
Wu, K. Johnson, and Y. Wu, Highly constrained backprojec-
tion for time-resolved MRI, Magn. Reson. Med, 2006;55(1)30-
40

17.R. O'Halloran, Z. Wen, J. Holmes, and S. Fain, Iterative
projection reconstruction of time-resolved images using
highly-constrained back-proejction (HYPR), Magn. Reson.
Med, 2008;59(1):132-139

18.]. Wild, M. Paley, L. Kasuboski, A. Swift, S. Fichele, N.
Woodhouse, P. Griffiths, and E. van Beek, Dynamic radial
projection MRI of inhaled hyperpolarized 3 He gas, Magn.
Reson. Med, 2003;49(6):991-997

19.Z. P. Liang and P. C. Lauterbur, Principles of magnetic
resonance imaging: A signal processing perspective, New
York: IEEE press, 2000.

-19-



Hong Jung et al

CHERED ISl MEtSIAl 14:10-20(2010)

k-t FOCUSS €38 5-2 0]£3F 3835 4-D MR 3 2 JAl 7|

S 22, T ofjg|z} AlEvbellA] Gl FAR7]EE s (ISMRM) 732 20099 dlold] AE=# 44 &
Holl Bt fFAellA] A7 dd 5 g7t A3l o] i3] time resolved contrast enhanced MR
angiography °ll thsk 31<; 2od o] AA| 28 7HaA H7kshy] 1 Zlolodnt. B =2 o] ti3]e] 95 A=
A2 k-t FOCUSS ¢aels< A E 2pAls] BARLES gt

CHAM o BHH: B 52 oA odFrollA] vlad] | 2923t A od4dol] tisl] k-t FOCUSS ¢atelso] AsA s
AN FAS E5 9SS St vlebA k-t FOCUSS ¢x2l5-S time resolved contrast enhanced
MR angiography ofl 283023 wll$%- Agt oJ 4 Bdo] 7158 Aolut, 34 595 Al Xray ti¥] da=
Fgo e FAE ok AELE dlofel7) i3] FHFo g ] T AXENIL, WA oAEe] 7t
A5 oddoll iz AP B K glo], Al d4wt 5% AaE vlagtozs, e A kst

f: vhekst chpAE R o] el dolXl AE od4de] vk wigto|u) AEE o 2 kAl Y] Fast @
Zgol o8l A ke whethe A HoF3leh

HE: 2% Anz R k=4 &7 ZH A4 71Hel k-t FOCUSS 71 aafA%9] time resolved
contrast enhanced MR angiography & 7}FssH & 4= 98-8 &lslic).

o

Iy Jz of

o

]

FAAAL L AlEA, (305-701) tFFAIA] KT F4F 373-1
Sk o}71 44 o] 9111 geta} vhol 0. 1 Wl AlE e @17
Tel. 82-42-350-4320 Fax. 82-42-350-4310 E-mail: jong.ye@Kkaist.ac.kr

-20-



