• Title/Summary/Keyword: Dynamic Soil-Structure Interaction

Search Result 260, Processing Time 0.033 seconds

Dynamic Infinite Elements for 3D Soil-Structure Interaction Analysis (3차원 지반-구조물 상호작용해석을 위한 동적 무한요소)

  • Seo Choon-Kyo;Yun Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.521-528
    • /
    • 2005
  • In this paper, three dimensional dynamic infinite elements are developed for the soil-structure interaction analysis in multi-layered halfspace. For the efficient discretization of 3-D for field regions, five types of dynamic infinite elements are developed. They are the horizontal, vertical, horizontal comer, vertical comer and horizontal/vertical corner infinite elements. The shape functions of the infinite elements are based on approximate expressions of analytical solutions of propagating waves in the infinite region. Numerical example analyses are presented for compliances of rigid circular and square plates to demonstrate the effectiveness of the proposed infinite elements.

  • PDF

Development of 3-D Dynamic Infinite Elements for 3D Soil-Structure Interaction Analysis in Multi-layered Halfspaces (적층 반무한지반에서 3차원 지반-구조물 상호작용해석을 위한 동적 무한요소의 개발)

  • 서춘교;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.304-311
    • /
    • 2004
  • In this paper, three dimensional dynamic infinite elements are developed for the soil-structure interaction analysis in multi-layered halfspace. For the efficient discretization of 3-D for field regions, five types of dynamic infinite elements are developed. They are the horizontal, vertical, upper horizontal conner, lower vertical conner and conner of conner infinite elements. The shape functions of the infinite elements are based on the approximate expressions of the analytical solutions of the propagating waves in the infinite region. Numerical example analyses are presented for demonstrating the effectiveness of the proposed infinite elements.

  • PDF

Development of 3-D Dynamic Infinite Elements for 3D Soil-Structure Interaction Analysis in Multi-layered Halfspaces (적층 반무한지반에서 3차원 지반-구조물 상호작용해석을 위한 동적 무한요소의 개발)

  • 윤정방;서춘교;장수혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.79-86
    • /
    • 2003
  • In this paper, three dimensional dynamic infinite elements are developed for the soil-structure interaction analysis in multi-layered halfspace. For the efficient discretization of 3-D for field regions, five types of dynamic infinite elements are developed, they are the horizontal, vertical, upper horizontal conner, lower vertical conner and conner of conner infinite elements. The shape functions of the infinite elements are based on the approximate expressions of the analytical solutions of the propagation wave in the infinite region. Numerical example analyses are presented for demonstrating the effectiveness of the proposed infinite elements.

  • PDF

Time Domain Soil-Structure Interaction Analysis for Earthquake Loadings Based on Analytical Frequency-Dependent Infinite Elements (해석적 주파수종속 무한요소를 사용한 시간영역해석의 지반-구조물의 상호작용을 고려한 지진해석)

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.121-128
    • /
    • 1999
  • This paper presents a time domain method for soil-structure interaction analysis for seismic loadings. It is based on the finite element formulation incorporating analytical frequency-dependent infinite elements for the far field soil. The dynamic stiffness matrices of the far field region formulated using the present method in frequency domain can be easily transformed into the corresponding matrices in time domain. At first, the equivalent earthquake forces are evaluated along the interface between the near and the far fields from the free-field response analysis carried out in frequency domain, and the results are transformed into the time domain. An efficient procedure is developed for the convolution integrals to evaluate the interaction force along the interface, which depends on the response on the interface at the past time instances as well as the concurrent instance. Then, the dynamic responses are obtained for the equivalent earthquake force and the interaction force using Newmark direct integration technique. Since the response analysis is carried out in time domain, it can be easily extended to the nonlinear analysis. Example analysis has been carried out to verify the present method in a multi-layered half-space.

  • PDF

Numerical Modeling of 1g Shaking Table Model Pile Tests for Evaluating Dynamic Soil-Pile Interaction (지반-말뚝 동적 상호 작용 평가를 위한 1g 진동대 실험의 수치 모델링)

  • Oh, Man-Kyo;Kim, Seong-Hwan;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.173-183
    • /
    • 2010
  • Numerical analysis using a three dimensional finite element program(ABAQUS) is a powerful method which can evaluate the soil-pile-structure interaction under the dynamic loading and reduce the computation time significantly, but has not be widely used because modeling a soil-pile system and setting the parameter for the entire model are difficult and a three dimensional finite element program is not user friendly. However, a three dimensional finite element program is expected to be widely used because of advance in research of modeling technique and development of the modeling and visualization. In this study, ABAQUS is used to simulate the 1g shaking table model pile test, and the numerical results are compared with the 1g shaking table test results. The application about the soil stiffness and boundary condition change is estimated and then parametric study for various input acceleration amplitudes, various input frequencies, and various surcharge is carried out.

  • PDF

Dynamic response evaluation of deep underground structures based on numerical simulation

  • Yoo, Mintaek;Kwon, Sun Yong;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.269-279
    • /
    • 2022
  • In this research, a series of dynamic numerical analysis were carried out for deep underground building structures under the various earthquake conditions. Dynamic numerical analysis model was developed based on the PLAXIS2D and calibrated with centrifuge test data from Kim et al. (2016). The hardening soil model with small strain stiffness (HSSMALL) was adopted for soil constitutive model, and interface elements was employed at the interface between plate and soil elements to simulate dynamic interaction effect. In addition, parametric study was performed for fixed condition and embedded depth. Finally, the dynamic behavior of underground building structure was thoroughly analyzed and evaluated.

An Evaluation on the Seismic Stability of a Railway Bridge Pile Foundation Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 철도 교량하부 말뚝 기초의 내진 안정성 평가)

  • 이기호;신민호
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.29-40
    • /
    • 2003
  • In this study, the three dimensional pile-soil dynamic interaction analysis of the railway bridge pile foundation was performed using SASSI 2000 program and the applicability of SASSI 2000 about an evaluation of the seismic stability of a pile foundation was examined. The numerical analysis was executed on the two site of actual construction and input properties such as the acceleration of bedrock were estimated by one dimensional seismic response analysis using the Pro-SHAKE. Consequently, all the piles of the subject of investigation showed that displacement occurred within a permitted limit and the shear force and moment largely occurred at the point where the soil stiffness varied rapidly.

Evaluation of Soil Stiffness Variability Effects on Soil-Structure Interaction Response of Nuclear Power Plant Structure (지반강성의 변동성이 원전구조물의 지반-구조물 상호작용 응답에 미치는 영향 분석)

  • Kim, Jae Min;Noh, Tae Yong;Huh, Jungwon;Kim, Moon Soo;Hyun, Chang Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.63-74
    • /
    • 2015
  • This study investigated the influence of probabilistic variability in stiffness and nonlinearity of soil on response of nuclear power plant (NPP) structure subjected to seismic loads considering the soil-structure interaction (SSI). Both deterministic and probabilistic methods have been employed to evaluate the dynamic responses of the structure. For the deterministic method, $SRP_{min}$ method given in USNRC SRP 3.7.2(2013) (envelope of responses using three shear modulus profiles of lower bound($G_{LB}$), best estimate($G_{BE}$) and upper bound($G_{UB}$)) and $SRP_{max}$ method (envelope of responses by more than three ground profiles within range of $G_{LB}{\leq}G{\leq}G_{UB}$) have been considered. The probabilistic method uses the Latin Hypercube Sampling (LHS) that can capture probabilistic feature of soil stiffness defined by the median and the standard deviation. These analysis results indicated that 1) number of samples shall be larger than 60 to apply the probabilistic approach in SSI analysis and 2) in-structure response spectra using equivalent linear soil profiles considering the nonlinear behavior of soil medium can be larger than those based on low-strain soil profiles.

A Probabilistic Analysis of Soil- Structure Interaction Subjected to Seismic Loading (지진에 대한 지반-구조물 상호작용의 확률론적 연구)

  • Lee, In-Mo;Kim, Yong-Jin;Lee, Jeong-Hak
    • Geotechnical Engineering
    • /
    • v.6 no.2
    • /
    • pp.5-20
    • /
    • 1990
  • In the seismic analysis of structures, where the dynamic soil-structure interaction (DSSI) is considred, earthquake input motions as well as dynamic soil properties are random in nature. To take into account the random nature of both the input motions and the dynamic soil properties systematically, a probabilistic analysis of the DSSI subjected to seismic loading is proposed in this paper, The complex response method formulized by the elastic half space theory, the random vibration theory, and the Rosenblueth's two-point estimate method are combined for the proposed probabilistic analysis. The conclusions drawn from this study are as follows ' 1) The uncertainty bands of the earthquake input motions proposed by Kanai-Tajimi as well as those of the dynamic properties are large the coefecients of variation of those parameters tinge from 0.4 to 0.6. 2) The uncertainties of the dynamic soil properties are more sensitive to the structural responses than those of the input motion parameters. 3) The effect of correlations between the input motion parameters and the dynamic soil properties is negligible.

  • PDF

Blast load induced response and the associated damage of buildings considering SSI

  • Mahmoud, Sayed
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.349-365
    • /
    • 2014
  • The dynamic response of structures under extremely short duration dynamic loads is of great concern nowadays. This paper investigates structures' response as well as the associated structural damage to explosive loads considering and ignoring the supporting soil flexibility effect. In the analysis, buildings are modeled by two alternate approaches namely, (1) building with fixed supports, (2) building with supports accounting for soil-flexibility. A lumped parameter model with spring-dashpot elements is incorporated at the base of the building model to simulate the horizontal and rotational movements of supporting soil. The soil flexibility for various shear wave velocities has been considered in the investigation. In addition, the influence of variation of lateral natural periods of building models on the obtained response and peak response time-histories besides damage indices has also been investigated under blast loads with different peak over static pressures. The Dynamic response is obtained by solving the governing equations of motion of the considered building model using a developed Matlab code based on the finite element toolbox CALFEM. The predicted results expressed in time-domain by the building model incorporating SSI effect are compared with the corresponding model results ignoring soil flexibility effect. The results show that the effect of surrounding soil medium leads to significant changes in the obtained dynamic response of the considered systems and hence cannot be simply ignored in damage assessment and response time-histories of structures where it increases response and amplifies damage of structures subjected to blast loads. Moreover, the numerical results provide an understanding of level of damage of structure through the computed damage indices.