• Title/Summary/Keyword: Dynamic Process

Search Result 4,330, Processing Time 0.036 seconds

Problems of Assignable Causes in Dynamic Feedback Process Control (동적 피드백 공정조절에 있어 이상원인의 문제)

  • Jun Sang-Pyo
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.5
    • /
    • pp.213-231
    • /
    • 2005
  • Assignable causes producing temporary deviation from the underlying system can influence on process adjustment and process monitoring in dynamic feedback control system. In this paper, the influence of assignable causes on EWMA forecasts and compensatory variables are derived for a dynamic feedback control system. An example is presented to confirm the impact numerically through the analysis of a data.

Analysis of the Reduction of the Dynamic Response for the CNC 5 Axles Machining Center (CNC 5축 공작기계의 동응답 저감 해석)

  • KIM, Gi Man;CHOI, Seong Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.83-89
    • /
    • 2010
  • In this paper, the dynamic response of a CNC 5 Axles machining center was analyzed and then controlled passively by using the dynamic absorber. For the simplification of the theoretical approach, the CNC 5 Axles machining center was modeled as a flexible beam(Bed) having a point mass(Column), two discrete systems(a Table-set and a dynamic absorber). Specifically by using the dynamic absorber, the dynamic response of a Table-set which be caused by the vibration of a flexible beam, was reduced down to the infinitesimal level. The optimal design factors of the dynamic absorber were obtained from the minimization of the cost function. It was found that the natural frequencies of a UT-380 machining center be varied due to the movement of the Table-set. In view of the dynamic response of a Table-set, the larger spring stiffness and mass of the dynamic absorber were found to give the greater reduction.

Dynamic fracture instability in brittle materials: Insights from DEM simulations

  • Kou, Miaomiao;Han, Dongchen;Xiao, Congcong;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.65-75
    • /
    • 2019
  • In this article, the dynamic fracture instability characteristics, including dynamic crack propagation and crack branching, in PMMA brittle solids under dynamic loading are investigated using the discrete element method (DEM) simulations. The microscopic parameters in DEM are first calibrated using the comparison with the previous experimental results not only in the field of qualitative analysis, but also in the field of quantitative analysis. The calibrating process illustrates that the selected microscopic parameters in DEM are suitable to effectively and accurately simulate dynamic fracture process in PMMA brittle solids subjected to dynamic loads. The typical dynamic fracture behaviors of solids under dynamic loading are then reproduced by DEM. Compared with the previous experimental and numerical results, the present numerical results are in good agreement with the existing ones not only in the field of qualitative analysis, but also in the field of quantitative analysis. Furthermore, effects of dynamic loading magnitude, offset distance of the initial crack and initial crack length on dynamic fracture behaviors are numerically discussed.

Dynamic Modeling for the Coal Gasification Process (석탄가스화공정의 동적모델링)

  • 유희종;김원배;윤용승
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1997.10a
    • /
    • pp.47-53
    • /
    • 1997
  • Dynamic models have been developed for the coal gasification process by using a modular approach method. The complete unit is divided, for the convenience of the analysis, into several sections, viz. the coal feeding system, the gasifier, the gas cooler, the valves, the pumps, etc. The dynamic behaviour of each section is described in mathematical terms and each term is modulized into several submodels consisting of the complete process. To represent the behaviour of the fluid flow, the hydraulic network is proposed. Results for the more important system variables are presented and discussed. There dynamic models enable process and control engineers to quickly review a wide range of alternative operating and control strategies and help operators to easily understand the process dynamics and eventually can be applied to the design of commercial scale IGCC plants.

  • PDF

Improved DMC for the integrating process (적분 공정 제어를 위한 향상된 DMC)

  • 강병삼;한종훈;장근수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1120-1123
    • /
    • 1996
  • DMC(Dynamic Matrix Control) algorithm has been successfully used in industries for more than a decade. It can handle constraints and easily extended to MIMO case. The application of DMC, however, is limited to the open loop stable process because it uses the FIR(Finite Impulse Response) or FSR(Finite Step Response) model. Integrating process widely used in chemical process industry, is the representative open loop unstable process. The disturbance rejection of DMC is relatively poor due to the assumption that the current disturbance is equivalent to the future disturbance. We propose the IDMC(Improved Dynamic Matrix Control) for the integrating process, as well as non-integrating process. IDMC has shown better disturbance rejection using multi-step ahead predictor for the disturbance.

  • PDF

Characteristics of the Bundle Drawing Process by Random Phase Spectrum Method (임의 위상스펙트럼(RPS)법에 의한 집속인발 공정의 특성연구)

  • Huh You;Kim Jong-S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.201-202
    • /
    • 2006
  • To analyze the dynamic characteristics of the bundle drawing process, we employed a Random Phase Spectrum method to generate stochastic test signals that had a given autocorrelation function. And the spectra of the dynamics of the process outputs were obtained, based on the dynamic model of the bundle drawing process. Results showed that the RPS method was very effective to generate stochastic signals that had an exponential function form. The drawing process had the traits that there existed a special frequency range, incurring the process resonance.

  • PDF

Impact on AIS Process and Firm Performance of Accounting Information System Based on Dynamic Capabilities Framework (DCF에 근거한 회계정보시스템이 AIS프로세스와 기업성과에 미치는 영향)

  • Kim, Kyung Ihl
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.169-175
    • /
    • 2017
  • Accounting information systems (AIS) capture and process accounting data and provide valuable information for decision makers. However, in a rapidly changing environment, continual management of the AIS is necessary for organizations to optimize performance outcomes. I suggest that building a dynamic AIS capability enables accounting process and organizational performance. Using the dynamic capabilities framework (Teece 2007). I propose that a dynamic AIS capability can bedeveloped through the synergy of three competencies: having (1) a flexible AIS, (2) a complementary business intelligence system, and (3) accounting professionals with IT technical competency. Using survey data, I find evidence of a positive association between a dynamic AIS capability, accounting process performance, and overall firm performance. The results suggest that developing a dynamic AIS resource can add value to an organization. This study provides guidance for organizations looking to leverage the performance outcomes of their environment.

금형강의 앤드밀 가공시 동적모델에 의한 절삭력 예측

  • 이기용;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.49-54
    • /
    • 1994
  • A dynamic model for the cutting process in the end milling process is developed. This model, which describes the dynamic response of the end mill, the chip load geometry including tool runout, the dependence of the cutting forces on the chip load, is used to predict the dynamic cutting force during the end milling process. In order to predict accurately cutting forces and tool vibration, the model, which uses instantaneous specific cutting force, includes both regenerative effect and penetration effect. The model is verified through comparisons of model predicted cutting force with measured cutting forces obtained from machining experiments.

  • PDF

Dynamic control modeling of the GMA welding system using the system identification and weld pool width control (시스템 식별을 이용한 GMA 용접 시스템의 동적 제어 모델링과 용융지폭 제어)

  • 김동철;이세헌;엄기원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.97-103
    • /
    • 1997
  • Designing a feedback controller requires a dynamic model of the process to be controlled. But the GMA welding process models have not been fully developed for many reasons such as complexity of the welding process and lack of reliable sensors. Because of the complexity of the welding system, we obtained a dynamic model for control using system identification routines, rather than derived a model from fundamental physical laws. The controller was designed based on the experimentally derived linear dynamic model of the welding process. In order to demonstrate application of the designed controller, the simulation was carried out.

General purpose dynamic process simulator based upon the cluster-modular approach

  • Lee, Kang-Wook;Lee, Kang-Ju;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.638-642
    • /
    • 1994
  • The objectives of this work are to present the dynamic simulation strategy based on cluster-modular approach and to develop a prototype simulator. In addition, methods for the improvement of computational efficiency and applicability are studied. A process can be decomposed into several clusters which consist of strongly coupled units depending upon the process dynamics or topology. The combined approach of simultaneous and sequential simulation based on the cluster structure is implemented within the developed dynamic process simulator, MOSA(Multi Objective Simulation Architecture). Dynamic simulation for a utility plant is presented as a case study in order to prove the efficiency and flexibility of MOSA.

  • PDF