• Title/Summary/Keyword: Dynamic Load Factor

Search Result 385, Processing Time 0.029 seconds

Analytical Method to Determine the Dynamic Amplification Factor due to Hanger Cable Rupture of Suspension Bridges (현수교 행어 케이블 파단에 의한 동적확대계수의 해석적 결정법)

  • Na, Hyun Ho;Kim, Yuhee;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.301-308
    • /
    • 2014
  • A suspension bridge is a type of bridge in which the beam is suspended by load-bearing cables. There are two classifications: the self-anchored suspension bridge has the main cable anchored to the bridge girders, and the earth-anchored suspension bridge has the main cable anchored to a large anchorage. Although a suspension bridge is structurally safe, it is prone to be damaged by various actions such as hurricanes, tsunamis and terrorist incidents because its cables are exposed. If damage to a cable eventually leads to the cable rupture, the bridge may collapse. To avoid these accidents, studies on the dynamic behavior of cable bridges due to the cable rupture have been carried out. Design codes specify that the calculated DAF (dynamic amplification factor) should not exceed a certain value. However, it has been difficult to determine DAFs effectively from dynamic analysis, and thus no systematic approach has been suggested. The current study provides a guideline to determine DAFs reliably from the dynamic analysis results and summarizes the results by applying the method to an earth-anchored suspension bridge. In the study, DAFs were calculated at the location of four structural parts, girders, pylons, main cable and hangers, with variations in the rupture time.

Development of Impact Factor Response Spectrum with Tri-Axle Moving Loads and Investigation of Response Factor of Middle-Small Size-RC Slab Aged Bridges (3축 이동하중을 고려한 충격계수 응답스펙트럼 개발 및 중소규모 RC 슬래브 노후교량 응답계수 분석)

  • Kim, Taehyeon;Hong, Sanghyun;Park, Kyung-Hoon;Roh, Hwasung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.67-74
    • /
    • 2019
  • In this paper the response factor is investigated for middle and small size-RC slab aged bridges. The response factor consists of static and dynamic response factors and is a main parameter in the frequency based-bridge load carrying capacity prediction model. Static and dynamic response factors are determined based on the frequency variation and the impact factor variation respectively between current and previous (or design) states of bridges. Here, the impact factor variation is figured out using the impact factor response spectrum which provides the impact factor according to the natural frequency of bridges. In this study, four actual RC slab bridges aged over 30 years after construction are considered and their span length is 12m. The dynamic loading test in field using a dump truck and eigenvalue analysis with FE models are conducted to identify the current and previous (or design) state-natural frequencies of the bridges, respectively. For more realistic considerations in the moving loading situation, the impact factor response spectrum is developed based on tri-axle moving loads representing the dump truck load distribution and various supporting conditions such as simply supported and both ends fixed conditions. From the results, the response factor is widely ranged from 0.21to 0.91, showing that the static response factor contributes significantly on the results while the dynamic response factor has a small effect on the result. Compared to the results obtained from the impact factor response spectrum based on the single axle-simply supported condition, the maximum percentage difference of the response factors is below 3.2% only.

A Study of Design Single Phase Boost Converter Controller for Compensated Load Current and Duty (부하전류와 듀티를 보상하는 단상 PFC 부스트 컨버터 제어기 설계)

  • Lim, Jae-Uk;Lee, Seung-Tae;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.527-534
    • /
    • 2017
  • This paper proposes a new DC link voltage controller for a single-phase power factor correction (PFC) boost converter. The load current of the PFC boost converter affects the capacitor current, whereas the load current changes the output voltage. However, previous works that compensate output current have failed to consider the relationship between load current and duty. Thus, they also fail to maintain a constant output voltage if the load fluctuates under the conditions of a non-rated input voltage. By considering the duty in the load current compensation, the proposed method improves the load transient response regardless of the input voltage. To demonstrate its effectiveness, the proposed method is compared with other control methods by conducting PSM simulations and experiments under a rapidly changing load.

Numerical Analysis of Stress Field around Crack Tip under Impact Load (충격하중에 의해 크랙 주위에 형성되는 응력장에 관한 수치해석적 연구)

  • Hwang, Gap-Woon;Cho, Kyu-Zong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.450-460
    • /
    • 1996
  • To investigate the effect of stress wave propagation for crack tip, impact responses of two-dimensional plates with oblique cracks are investigated by a numerical method. In the numerical analysis, the finite element method is used in space domain discretization and the Newmark constant acceleration algorithm is used in time integration. According to the numerical results from the impact response analysis. it is found that the stress fields are bisected at the crack surface and the parts of stress intensity are moved along the crack face. The crack tip stress fields are yaried rapidly. The magnitude of crack tip stress fields are converted to dynamic stress intensity factor. Dynamic sress intensity factor appears when the stress wave has reached at the crack tip and the aspect of change of dynamic stress intensity factor is shown to be the same as the part of the flow of stress intensity.

Dynamic Stress Intensity Factor $K_{IIID}$ for a Propagating Crack in Liner Functionally Gradient Materials Along X Direction (X방향의 선형함수구배인 재료에서 전파하는 균열의 동적응력확대계수 $K_{IIID}$)

  • Lee, Kwang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.3-8
    • /
    • 2001
  • Dynamic stress intensity factors (DSIFs) are obtained when a crack propagates with constant velocity in rectangular functionally gradient materials (FGMs) under dynamic mode III load. To obtain the dynamic stress intensity factors, it is used the general stress and displacement fields of FGMs for propagating crack and the boundary collocation method (BCM). The stress intensity factors and energy release rates are the greatest in the increasing properties $(\xi>0)$, next constant properties $(\x=0)$ and decreasing properties $(\xi<0)$ under constant crack tip properties and crack tip speed.

  • PDF

The Analysis of Fatigue Quality Index for Shape of Elliptical Hole in Plate (평판에서 타원공의 형상에 따른 피로도지수 해석)

  • 송준혁;노홍길;강희용;양성모
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.130-136
    • /
    • 2003
  • A FQI(fatigue quality index) analysis using the concept of SF(severity factor) is performed to various shape of elliptical hole. FQI is fatigue quality index to estimate the dynamic SF from static SF by finite element analysis. Since the SF is affected by the location of cutout in plate and radius ratio, static SF is analyzed with finite element method and forms the equation of FQI for predicting a dynamic SF. To examine the validity, dynamic SF is measured by photoelastics and thermalelastics for an epoxy resin plate with various elliptical holes under dynamic load.

  • PDF

Comparative assessment of ASCE 7-16 and KBC 2016 for determination of design wind loads for tall buildings

  • Alinejad, Hamidreza;Jeong, Seung Yong;Kang, Thomas H.K.
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.575-591
    • /
    • 2020
  • Wind load is typically considered as one of the governing design loads acting on a structure. Understanding its nature is essential in evaluation of its action on the structure. Many codes and standards are founded on state of the art knowledge and include step by step procedures to calculate wind loads for various types of structures. One of the most accepted means for calculating wind load is using Gust Load Factor or base bending Moment Gust Load Factor (MGLF), where codes are adjusted based on local data available. Although local data may differ, the general procedure is the same. In this paper, ASCE 7-16 (2017), which is used as the main reference in the U.S., and Korean Building Code (KBC 2016) are compared in evaluation of wind loads. The primary purpose of this paper is to provide insight on each code from a structural engineering perspective. Herein, discussion focuses on where the two codes are compatible and differ. In evaluating the action of wind loads on a building, knowledge of the dynamic properties of the structure is critical. For this study, the design of four figurative high-rise buildings with dual systems was analyzed.

A Dynamic Load Redistribution Method including Self-adjustable in Heterogeneous Distributed System (이질형 분산시스템에서의 자기조절능력을 포함하는 동적 부하재분배 방법)

  • Shim, Dong-Hee;Cho, Dong-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.1
    • /
    • pp.107-118
    • /
    • 2006
  • Load redistribution algorithm is a critical factor in computer system. In a receiver-initiated load redistribution algorithm, receiver(underloaded processor) continues to send unnecessary request messages for load transfer until a sender(overloaded processor) is found while the system load is light. Therefore, it yields many problems such as low cpu utilization and system throughput because of inefficient inter-processor communications until the receiver receives an accept message from the sender in this environment. This paper presents an approach based on genetic algorithm(GA) for dynamic load redistribution including self-adjustable in heterogeneous distributed systems. In this scheme the processors to which the requests are sent off are determined by the proposed GA to decrease unnecessary request messages.

  • PDF

A Genetic Approach for Dynamic Load Redistribution in Heterogeneous Distributed Systems (이질형 분산시스템에서의 동적 부하재분배를 위한 유전적 접근법)

  • Lee, Seong-Hoon;Han, Kun-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.1-10
    • /
    • 2006
  • Load redistribution algorithm is a critical factor in computer system. In a receiver-initiated load redistribution algorithm, receiver(underloaded processor) continues to send unnecessary request messages for load transfer until a sender(overloaded processor) is found while the system load is light. Therefore, it yields many problems such as low CPU utilization and system throughput because of inefficient inter-processor communications until the receiver receives an accept message from the sender in this environment. This paper presents an approach based on genetic. algorithm(GA) for dynamic load redistribution in heterogeneous distributed systems. In this scheme the processors to which the requests are sent off are determined by the proposed GA to decrease unnecessary request messages.

  • PDF

Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(II) - Effects of Initial Deflection - (초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구(II) - 초기 처짐에 따른 동적 특성 -)

  • Cho, Jin-Goo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.91-99
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form and boundary conditions as well as arbitrary general type of loading. Therefore, the stress and analysis of thin shell has been one of the more challenging areas of structural mechanics. A wide variety of numerical methods have been applied to the governing differential equations for spherical and cylindrical structures with a few results applicable to practice. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometry changes on the response is also significant in many cases. Therefore both material and geometric nonlinear effects should be considered. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical shell. For these purposes, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic static and dynamic response. Geometrically nonlinear behaviour is taken into account using a Total Lagrangian formulation and the material behaviour is assumed to elasto-viscoplastic model highly corresponding to the real behaviour of the material. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows : The dynamic characteristics with a/H. 1) AS the a/H increases, the amplitude of displacement in creased. 2) The values of displacement dynamic magnification factor (DMF) were ranges from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell were ranged from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point shell is increased gradually. 4) The values of DMF of hoop-stresses were range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.3 to 2.6, and the values of DMF of stress were larger than that of displacement. The dynamic characteristics with t/R. 5) With the thickness of shell decreases, the amplitude of the displacement and the period increased. 6) The values of DMF of the displacement were ranged from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.1 to 2.2.

  • PDF