• Title/Summary/Keyword: Dynamic Frequency Divider

Search Result 14, Processing Time 0.024 seconds

Analysis of Input/Output Transfer Characteristic to Transmit Modulated Signals through a Dynamic Frequency Divider (동적 주파수 분할기의 변조신호 전송 조건을 위한 입출력 전달 특성 분석과 설계에 대한 연구)

  • Ryu, Sungheon;Park, Youngcheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.170-175
    • /
    • 2016
  • In order to transmit baseband signals through frequency dividing devices, we studied the transfer function of the device in the term of the baseband signal distortion. From the analysis, it is shown that the magnitude of the envelope signal is related to the mixer gain and the insertion loss of the low pass filter whilst the phase is the additional function with the 1/2 of the phase delay. For the purpose of the verification of the study, we designed a dynamic frequency divider at 1,400 MHz. The operating frequency range of the device is closely related to the conversion gain of mixers and the amplitude of input signal, and becomes wide as the conversion gain of mixers increases. The designed frequency divider operates between 0.9 GHz and 3.2 GHz, for -14.5 dBm input power. The circuit shows 20 mW power dissipation at $V_{DD}=2.5V$, and the simulation result shows that an amplitude modulated signal at 1,400 MHz with the modulation index of 0.9 was successfully downconverted to 700 MHz.

Design of a CMOS Frequency Synthesizer for FRS Band (UHF FRS 대역 CMOS PLL 주파수 합성기 설계)

  • Lee, Jeung-Jin;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.941-947
    • /
    • 2017
  • This paper reports a fractional-N phase-locked-loop(PLL) frequency synthesizer that is implemented in a $0.35-{\mu}m$ standard CMOS process and generates a quadrature signal for an FRS terminal. The synthesizer consists of a voltage-controlled oscillator(VCO), a charge pump(CP), loop filter(LF), a phase frequency detector(PFD), and a frequency divider. The VCO has been designed with an LC resonant circuit to provide better phase noise and power characteristics, and the CP is designed to be able to adjust the pumping current according to the PFD output. The frequency divider has been designed by a 16-divider pre-scaler and fractional-N divider based on the third delta-sigma modulator($3^{rd}$ DSM). The LF is a third-order RC filter. The measured results show that the proposed device has a dynamic frequency range of 460~510 MHz and -3.86 dBm radio-frequency output power. The phase noise of the output signal is -94.8 dBc/Hz, and the lock-in time is $300{\mu}s$.

Design of 26GHz Variable-N Frequency Divider for RF PLL (RF PLL용 26GHz 가변 정수형 주파수분할기의 설계)

  • Kim, Ho-Gil;Chai, Sang-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.270-275
    • /
    • 2012
  • This paper describes design of a variable-N frequency synthesizer for RF PLL with $0.13{\mu}m$ silicon CMOS technology being used as an application of the UWB system like MBOA. To get good performance of speed and noise super dynamic circuits was used, and to get variable-N division ratio MOSFET switching circuits was used. Especially to solve narrow bandwidth problem of the dynamic circuits load resistance value of unit divider block was varied. Simulation results of the designed circuit shows very fast and wide operation characteristics as 5~26GHz frequency range.

Design of Programmable 14GHz Frequency Divider for RF PLL (RF PLL용 프로그램 가능한 14GHz 주파수분할기의 설계)

  • Kang, Ho-Yong;Chai, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • This paper describes design of a programmable frequency synthesizer for RF PLL with $0.18{\mu}m$ silicon CMOS technology being used as an application of the UWB system like MBOA. To get good performance of speed and noise super dynamic circuits was used, and to get programmable division ratio switching circuits was used. Especially to solve narrow bandwidth problem of the dynamic circuits load resistance value of unit divider block was varied. Simulation results of the designed circuit shows very fast and wide operation characteristics as 1~14GHz frequency range.

A 8-bit Variable Gain Single-slope ADC for CMOS Image Sensor

  • Park, Soo-Yang;Son, Sang-Hee;Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.11 no.1 s.20
    • /
    • pp.38-45
    • /
    • 2007
  • A new 8-bit single-slope ADC using analog RAMP generator with digitally controllable dynamic range has been proposed and simulated for column level or per-pixel CMOS image sensor application. The conversion gain of ADC can he controlled easily by using frequency divider with digitally controllable diviber ratio, coarse/fine RAMP with class-AB op-amp, resistor strings, decoder, comparator, and etc. The chip area and power consumption can be decreased by simplified analog circuits and passive components. Proposed frequency divider has been implemented and verified with 0.65um, 2-poly, 2-metal standard CMOS process. And the functional verification has been simulated and accomplished in a 0.35$\mu$m standard CMOS process.

  • PDF

Design of Low-power Clock Generator Synchronized with the AC Power Source Using the ADCL Buffer for Adiabatic Logics (ADCL 버퍼를 이용한 단열 논리회로용 AC 전원과 동기화된 저전력 클럭 발생기 설계)

  • Cho, Seung-Il;Kim, Seong-Kweon;Harada, Tomochika;Yokoyama, Michio
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1301-1308
    • /
    • 2012
  • In this paper, the low-power clock generator synchronized with the AC power signal using the adiabatic dynamic CMOS logic (ADCL) buffer is proposed for adiabatic logics. To reduce the power dissipation in conventional CMOS logic and to maintain adiabatic charging and discharging with low power for the ADCL, the clock signal of logic circuits should be synchronized with the AC power source. The clock signal for an adiabatic charging and discharging with the AC power signal was generated with the designed Schmitt trigger circuit and ADCL frequency divider using the ADCL buffer. From the simulation result, the power consumption of the proposed clock generator was estimated with approximately 1.181uW and 37.42uW at output 3kHz and 10MHz respectively.

A Study of Precision High Voltage Generator for Ion Injection (이온주입용 정밀고압 발생장치 연구)

  • 유동욱;정창용;백주원;조정구;조기연;김학성;원충연
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.158-161
    • /
    • 1998
  • A precision high voltage generator for ion injection is implemented on HFZVS-PSCI (High Frequency Zero-Voltage-Switching Phase-Shift-Controlled Inverter). Some practical aspects of implementing precision high voltage generator with HFZVS-PSCI, such as a HFHV transformer, multiflier, and precision CR divider are discussed. The results show that the generator under the Phase-Shift-Controller has a fast dynamic response, low ripple voltage, and high accuracy.

  • PDF

Design of a High Power Asymmetric Doherty Amplifier with a Linear Dynamic Range Characteristic (선형적인 동적 영역 특성을 갖는 고출력 비대칭 도허티 전력 증폭기의 설계)

  • Lee Ju-Young;Kim Ji-Yeon;Lee Dong-Heon;Kim Jong-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.538-545
    • /
    • 2006
  • In this paper, an asymmetric high power extended Doherty amplifier for WCDMA base-station applications is presented. The amplifier has an extended peak efficiency over 9 dB of output power and a linear dynamic range characteristic. To realize the peak efficiency extension and linear dynamic range characteristic, a two times larger peaking device compared to the main device, and an unequal power divider are used. From the experimental results of 1FA WCDMA signal, this amplifier has an efficiency of 31 % and an ACLR of -35 dBc is achieved at 9 dB back-off from P1 dB.

Wideband Tunable Semidynamic Fractional Frequency Divider MMIC (소수분주비를 갖는 광대역 가변 능동 주파수 분주기 마이크로파 집적 회로)

  • Won, Bok-Yeon;Shin, Jae-Wook;Shin, Hyun-Chol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.522-529
    • /
    • 2007
  • A semidynamic frequency divide-by-1.5 MMIC comprises a tunable polyphase filter, tunable image-rejection mixer, and a static divide-by-2 in the feedback path. Wideband suppression of unwanted tones is achieved by employing a tunable image-rejection mixer and a tunable single-stage polyphase filter. Implemented in GaInP/GaAs HBT technology, the divide-by-1.5 MMIC operates over the input frequency range of 4.5 to 9.2 GHz with better than -20 dBc suppressions of $1/3{\times}f_{in}\;and\;f_{in}$ tones, while dissipating 29 mA from 4.1 V supply.

Design of 3~10GHz UWB Frequency Synthesizer for MBOA System (MBOA용 3~10GHz UWB 주파수합성기의 설계)

  • Kim, Dong-Shik;Chai, Sang-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.134-139
    • /
    • 2013
  • This paper describes design of a RF frequency synthesizer for the MBOA UWB systems with $0.13{\mu}m$ silicon CMOS technology. To generate effective clock signal of the MBOA novel technique which uses large scale multiplication in band of low frequency and small scale multiplication in band of high frequency has been used to reduce oscillation bandwidth of VCO. To get good performance of high speed and wide band operation characteristics a VCO using PMOS core structure and a frequency divider using super dynamic structure used in design of PLL circuit.