• Title/Summary/Keyword: Dyes removal

Search Result 122, Processing Time 0.028 seconds

Recirculating Integrated System for the Treatment of Authentic Integrated-textile-dyeing Wastewater from Dyeing Industrial Complex (염색산업단지 종합폐수처리용 재순환 통합시스템)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.837-845
    • /
    • 2017
  • A recirculating integrated system composed of a fluidized biofilter filled with waste-tire crumb media fixed with return sludge from wastewater treatment facility of D dyeing industrial center, and a UV/photocatalytic reactor packed with calcined $TiO_2$ coated-glass beads as photocatalyst-support, was constructed and was run to treat authentic textile-dyeing wastewater from D-dyeing industrial center, which was mixed with an alkaline polyester-weight-reducing wastewater and a wastewater from sizing process. As a result, its total removal efficiency(RE(tot)) of $COD_{cr}$ and colors were ca. 81% and 55%, respectively. The synergy effect of the recirculating integrated system to enhance total removal efficiency(RE(tot)) of $COD_{cr}$ and colors were evaluated at most ca. 7% and 3%, respectively. The fluidized biofilter and the UV/photocatalytic reactor were responsible for ca. 94% and 6% of the total $COD_{cr}$ removal efficiency, respectively, and were also responsible for ca. 86% and 14% of the total color-removal efficiency, respectively. Thus, the degree of the UV/photocatalytic reactor-unit process's contribution to RE(tot) of color, was about 2.4 times of that to RE(tot) of $COD_{cr}$. Therefore, the UV/photocatalytic reactor facilitated the more effective elimination of colors by breaking down the chemical bonds oriented from colors of dyes such as azo-bond, than $COD_{cr}$. In addition, the effect of the removal efficiency of each unit process(i.e., the fluidized biofilter or the UV/photocatalytic reactor) of the recirculating integrated system on RE(tot) of $COD_{cr}$ and colors, was analysed by establishing its model equation with an analytic correlation.

EFFECT OF DFDB AND GTAM BARRIERS ON BONE REGENERATION AROUND IMMEDIATE IMPLANTS PLACED IN SURGICALLY DFFECTIVE SOCKET (골결손부가 있는 발치직후 매식 임플란트에서 탈회동결건조골과 GTAM차단막이 골재생에 미치는 영향)

  • Kim, Hyeong-Soo;Yang, Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.43-66
    • /
    • 1997
  • Dental implant may be immediately placed in postextraction socket which has alveolar bone defect. The purpose of this study was to compare the bone regeneration and bone quality around defects adjacent to implants that were placed into extraction sockets according to EFEB, GTAM barrier and GTAM barrier with DFDB. Mandibular P2, P3 and P4 were extracted bilaterally in dogs, and buccal defects were created about 4mm in depth and 3.3mm in width. Screwed pure titanium implants, 3.8mm in diameter and 10mm in length, were placed into the extraction sockets. The experimental groups were divided into four groups : the G group was covered with a GTAM barrier on the defective area, the D+G group was filled with DFEB and covered with a GTAM barrier, the D group was filled with DFDB only and the control group was sutured without any special treatment on the defective area. The experimental animals were killed after 12 weeks and specimens were prepared for light microscopic evaluation and fluorescent dyes were administered daily for 2 weeks after implantation, and injected on the 4th and 11th week for fluorescent microscopic examination to observe new bone formation and bone remodeling. The new Bone height of the buccal defect was measured and compared with the another for bone gain and the removal torque for the implant was measured for the comparison of bone density and bone-implant osseointegration. Results obtained were as follows : 1. Experimental groups showed bone regeneration in oder from D+G, G, D group and control. D+G and G group was significantly from D group and control(P<0.01). 2. In the defective area of control the regenerated alveolar bone showed poorly developed lamellated structure and fibrous tissue intervention into the bone-implant interface but the others showed well developed lamellated structure and osseointegration. 3. All implant groups showed no significaant difference in the removal torque for implant(P>0.05) These results suggest that immediate implants placed in defective sockets were successfully osseointegrated and utilizing placed in defective sockets were successfully osseointegrated and utilizing not only the combination of GTAM and DFDB but also only the GTAM was favorable for the predictable regeneration of the defective area.

  • PDF

Bone Healing around Screw - shaped Titanium Implants with Three Different Surface Topographies (임플란트의 표면처리 유형에 따른 골 치유 양상)

  • Koh, Young-Han;Kim, Young-Jun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.41-57
    • /
    • 2001
  • It is well known that the apposition of bone at implant surface would be influenced by the microstructure of titanium implants. The purpose of this study was to compare bone healing around the screw-shaped titanium implant with three different surface topographies in the canine mandibles by histological and biomechanical evaluation. All mandibular premolars of six mongrel dogs were extracted and implants were placed one month later. The pure titanium implants had different surface topographies: smooth and machined ($Steri-OSS^{(R)}$: Group II); sandblasted and acid-etched ($ITI^{(R)}$, SLA: Group III) surface. The fluorescent dyes were injected on the 2nd (calcein), 4th (oxytetracycline HCI) and 12th (alizarin red) weeks of healing. Dogs were sacrificed at 4 and 12 weeks after implantation. The decalcified and undecalcified specimens were prepared for histological and histo-metrical evaluation of implant-bone contact. Some specimens at 12 weeks after implantation were used for removal torque testing. Histologically, direct bone apposition to implant surface was found in all of the treated groups. More mature and dense bone was observed at the implant-bone interface at 12 weeks than that at 4 weeks after implantation. Under the fluorescent microscope, thick regular green fluorescent lines which mean early bone apposition were observed at the implant-bone interface in Group III, while yellow and red fluorescent areas were found at the implant-bone interface in Group I and II. The average implant-bone contact ratios at 4 weeks of healing were 54.3% in Group I, 57.7% in Group II and 66.2% in Group III. In Group I, implant-bone contact ratio was significantly lower than Group II and III(p<0.05). The average implant-to-bone contact ratios at 12 weeks after implantation were 64.3% in Group I, 66.7% in Group II and 71.2% in Group III. There was no significant difference among the three groups. In Group I and II, the implant-bone contact ratio at 12 weeks increased significantly in comparison to ratio at 4 weeks(p<0.05). The removal torque values at 12 weeks after implantation were 90.9 Ncm in Group I, 81.6 Ncm in Group II and 77.1 Ncm in Group III, which were significantly different(p<0.05). These results suggest that bone healing begin earlier and be better around the surface-treated implants compared to the smooth surface implants. The sandblasted and acid-etched implants showed the most favorable bone response among the three groups during the early healing stage and could reduce the waiting period prior to implant loading.

  • PDF

Preparation of PVA/Graphene Oxide/Fe3O4 Magnetic Microgels as an Effective Adsorbent for Dye Removal (폴리바이닐알코올/그래핀 옥사이드/산화철 자성 마이크로겔을 이용한 염료 제거)

  • Go, Seongmoon;Kim, Keunseong;Wi, Eunsol;Park, Rae-Su;Jung, Hong-Ryun;Yun, Changhun;Chang, Mincheol
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.98-105
    • /
    • 2022
  • In this study, polyvinyl alcohol (PVA)/graphene oxide (GO)/iron oxide (Fe3O4) magnetic microgels were prepared using a microfluidic approach and the dye adsorption capacity of the microgels was confirmed. The adsorption capacity (qe) of the gels was evaluated by varying the dye concentration, pH, and contact time with the microgels. The dyes used in this work were methylene blue (MB), crystal violet (CV), and malachite green (MG), and microgels showed the highest adsorption capacity (191.1 mg/g) in methylene blue. The microgels exhibited the highest adsorption capacity in the dye aqueous solution at pH 10 due to the presence of atomic nitrogen ions (N+) on the dye molecules. The adsorption isotherm studies revealed that the Langmuir isotherm is the best fit isotherm model for the dye adsorption on the microgels, indicative of monolayer adsorption. The kinetic analysis exhibited that the pseudo-second order model fits better than the pseudo-first order model, confirming that the adsorption process is chemisorption. In addition, the magnetic microgels showed good reusability and recovery efficiency. It was confirmed that the adsorption capacity of the gels maintains more than 70% of the initial capacity after 5 times of cycle experiments.

Filtering Rate with Effect of Water Temperature and Size of Two Farming Ascidians Styela clava and S. plicata, and a Farming Mussel Mytilus edulis (수온과 개체크기에 따른 양식산 미더덕, 흰멍게, 진주담치의 여수율)

  • KIM Yong Sool;Moon Tae Seok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.272-277
    • /
    • 1998
  • Filtering rates of two farming ascidians Styela clava and S. plicata, and of a farming mussel Mytilus edulis were experimentally investigated with reference to effects of water temperature and size. Absorptiometric determinations of filtering rates were carried out in a closed system with experimental animals being decreased indicate dyes neutral red. Optical density (OD) of 440 nm in path length 22 mm cell used as the indication of food particles absorption was appeared directly in proportion with the concentration of neutral red dyes. The filtering rate F is calculated by Kim's equation $F\;=\;V(1-e^{-z})$, where V is the water volume ($\ell$) in the experimental jar, and Z is the decreasing coefficient of OD as meaning of instantaneous removal speed as In $C_t\;=\;In\;C_{o}-Z{\cdot}t$, in this formula $C_t$ is OD at the time t. Filtering rate of S. clava increased as exponential function with increasing temperature while not over critical limit, and the critical temperature for filtering rate was assumed to be between $28^{\circ}C$ and $29^{\circ}C$. In case of S. plicata, the critical temperature was to be below $13^{\circ}C$, and through the temperature range $15\~25^{\circ}C$ appeared a little difference in level even though with significant. M. edulis was not appear any significant effects by water temperature less than $29^{\circ}C$. The model formula derived from the results is as below, where F is filtering rate (${\ell}/hr/animal$), T is water temperature ($^{\circ}C$), and DW is dry meat weight (g) of experimental animal. $$S.\;Clava;\;F\;=\;e xp\;(0.119\;T-4.540)\;(DW)^{0.6745},\;T<29^{\circ}C$$) $$S.\;plicata;\;F\;=\;e xp\;(A_t)\;(DW)^{0.5675},\;(13^{\circ}C $$[A_t =-8.56+0.6805\;T-0.0153\;T^2]$$ $$M.\;edulis;\;F\;=\;0.3844\;(DW)^{0.4952},\;<29^{\circ}C$$)

  • PDF

Photo-catalytic Degradation on B-, C-, N-, and F Element co-doped TiO2 under Visible-light Irradiation (B, C, N, F 원소 다중도핑된 TiO2의 가시광 광촉매 분해 반응)

  • Bai, Byong Chol;Im, Ji Sun;Kim, Jong Gu;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.29-33
    • /
    • 2010
  • In this study, boron, carbon, nitrogen and fluorine co-doped $TiO_{2}$ photocatalysts using tetraethylammonium tetrafluoroborate (TEATFB) have been prepared by different heat treatment temperatures to decrease the band gap. To explore the visible light photocatalytic activity of the novel low‐zband gap $TiO_{2}$ photocatalyst, the removal of two dyes was investigated, namely, acridine orange and rhodamine B. XRD patterns demonstrate that the samples calcined at temperatures up to $800^{\circ}C$ clearly show anatase peaks. The XPS results show that all the doped samples contain N, C, B and F elements and the doped $TiO_{2}$ shows the shift in the band gap transition down to 2.98 eV as UV-DRS results. In these UV-Vis results, photocatalytic activity of the doped $TiO_{2}$ is 1.61 times better than undoped $TiO_{2}$. Specially, excellent photoactivity results were obtained in the case of samples treated at $700^{\circ}C$.

Adsorption Characteristics and Parameters of Acid Black and Quinoline Yellow by Activated Carbon (활성탄에 의한 Acid Black과 Quinoline Yellow의 흡착특성 및 파라미터)

  • Yi, Kyung Ho;Hwang, Eun Jin;Baek, Woo Seung;Lee, Jong-Jib;Dong, Jong-In
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.186-195
    • /
    • 2020
  • The isothermal adsorption, dynamic, and thermodynamic parameters of Acid black (AB) and Quinoline yellow (QY) adsorption by activated carbon were investigated using the initial concentration, contact time, temperature, and pH of the dyes as adsorption parameters. The adsorption equilibrium data fits the Freundlich isothermal adsorption model, and the calculated Freundlich separation factor values found that activated carbon can effectively remove AB and QY. Comparing the kinetic data showed that the pseudo second order model was within 10% error in the adsorption process. The intraparticle diffusion equation results were divided into two straight lines. Since the slope of the intraparticle diffusion line was smaller than the slope of the boundary layer diffusion line, it was confirmed that intraparticle diffusion was the rate-controlling step. The thermodynamic experiments indicated that the activation energies of AB and QY were 19.87 kJ mol-1 and 14.17 kJ mol-1, which corresponded with the physical adsorption process (5 ~ 40 kJ mol-1). The adsorption reaction was spontaneous because the free energy change in the adsorption of AB and QY by activated carbon was negative from 298 to 318 K. As the temperature increased, the free energy value decreased resulting in higher spontaneity. Adsorption of AB and QY by activated carbon showed the highest adsorption removal rate at pH 3 due to the effect of anions generated by dissociation. The adsorption mechanism was electrostatic attraction.

UV Light-assisted Photocatalytic Degradation of Simluated Methylene blue Dye by Multilayered ZnO Films (다층 ZnO 막에 의한 모의 메틸렌블루 염료의 자외선 광촉매분해)

  • Khan, Shenawar Ali;Zafar, Muhammad;Kim, Woo Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.34-41
    • /
    • 2022
  • As the use of chemical products increases in daily life, the removal of dye waste has also emerged as an important environmental issue. This dye waste can be decomposed using a photocatalyst, and the photocatalyst can be synthesized very cost-effectively by using the sol-gel technology. The sol-gel technology is not only very useful for nanoscale film formation, but also can simply form multilayer structures. Using a multiple spin coating method, in this study, a ZnO film with a multilayered structure (3 layers, 5 layers) was formed by using zinc oxide (ZnO), which is effective in decomposing various dyes. For performance comparison, a ZnO film having a single layer structure by a single spin coating method was prepared as a control. Structural and elemental analysis of ZnO film was performed using an X-ray diffraction analyzer and an energy dispersive X-ray spectrometer. A nanowire-like surface morphology could be observed through a scanning electron microscope. Additionally, UV-Vis spectrophotometer was used to measure the absorbance of UV light. The ZnO film with a five-layer structure degraded the simulated methylene blue by 49% more than the ZnO film with a single-layer structure. In conclusion, it was found that ZnO having a multilayered structure is useful as a photocatalyst that decomposes methylene blue dye more effectively.

Analysis of Characteristics and Optimization of Photo-degradation condition of Reactive Orange 16 Using a Box-Behnken Method (실험계획법 중 Box-Behnken(박스-벤켄)법을 이용한 반응성 염료의 광촉매 산화조건 특성 해석 및 최적화)

  • Cho, Il-Hyoung;Lee, Nae-Hyun;Chang, Soon-Woong;An, Sang-Woo;Yonn, Young-Han;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.917-925
    • /
    • 2006
  • The aim of our research was to apply experimental design methodology in the optimization of photocatalytic degradation of azo dye(Reactive orange 16). The reactions were mathematically described as a function of parameters amount of $TiO_2(x_1)$, and dye concentration($x_2$) being modeled by the use of the Box-Behnken method. The results show that the responses of color removal(%)($Y_1$) in photocatalysis of dyes were significantly affected by the synergistic effect of linear term of $TiO_2(x_1)$ and dye concentration($x_2$). Significant factors and synergistic effects for the $COD_{Cr}$, removal(%)($Y_2$) were the linear term of $TiO_2(x_1)$ and dye concentration($x_2$). However, the quadratic term of $TiO_2(x_1^2)$ and dye concentration($x_2^2$) had an antagonistic effect on $Y_1$ and $Y_2$ responses. Canonical analysis indicates that the stationary point was a saddle point for $Y_1$ and $Y_2$, respectively. The estimated ridge of maximum responses and optimal conditions for $Y_1:(X_1,\;X_2)$=(1.11 g/L, 51.2 mg/L) and $Y_2:(X_1,\;X_2)$=(1.42 g/L, 72.83 mg/L) using canonical analysis was 93% and 73%, respectively.

Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes (RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리)

  • Kim, A Ram;Park, Hyun Jung;Won, Yong Sun;Lee, Tae Yoon;Lee, Jae Keun;Lim, Jun Heok
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.16-28
    • /
    • 2016
  • Textile industry is considered as one of the most polluting sectors in terms of effluent composition and volume of discharge. It is well known that the effluents from textile dying industry contain not only chromatic substances but also large amounts of organic compounds and insolubles. The azo dyes generate huge amount of pollutions among many types of pigments. In general, the electrochemical treatments, separating colors and organic materials by oxidation and reduction on electrode surfaces, are regarded as simpler and faster processes for removal of pollutants compared to other wastewater treatments. In this paper the electrochemical degradation characteristics of dye wastewater containing CI Direct Blue 15 were analyzed. The experiments were performed with various anode materials, such as RuO2/Ti, PtO2/Ti, IrO2/Ti and graphite, with stainless steel for cathode. The optimal anode material was located by changing operating conditions like electrolyte concentration, current density, reaction temperature and initial pH. The degradation efficiency of dye wastewater increased in proportion to the electrolyte concentration and the current density for all anode materials, while the temperature effect was dependent on the kind. The performance orders of anode materials were RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite in acid condition and RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite in neutral and basic conditions. As a result, RuO2/Ti demonstrated the best performance as an anode material for the electrochemical treatment of dye wastewater.