• Title/Summary/Keyword: Durability Test

Search Result 2,086, Processing Time 0.028 seconds

A Basic Study on the Marine Anti-Fouling Coating Using Cellulose Nanofiber (셀룰로오스 나노섬유를 활용한 해양 방오 코팅제에 관한 기초 연구)

  • Jang, Nag-Seop;Kim, Tae-Kyun;Oh, Hong-Seob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.469-477
    • /
    • 2021
  • In this study, the mechanical property of anti-fouling coating using CNF was evaluated to prevent the durability and stability of structure exposed the marine environment. Anti-fouling coating using CNF was prepared by CNF, AKD and waste glass powder, and contact angle test, drying time, viscosity analysis and microstructure were performed. When coating on one number of times, It was showed to relatively high hydrophobic performance in steel. And It was confirmed that the contact angle increased as the content of AKD increased in cement mortar. When coating on three number of times, the surface was confirmed super-hydrophobic at maximum of 151.6°. When mixing waste glass powder, the surface was showed to relatively high hydrophobic. It is pseudo plastic fluid when CNF and distilled water were prepared in a ratio of 1:1, And Anti fouling coating is judged to be suitable for use as coating on marine structure.

A Study of Time Dependent Diffusion for Prediction Service Life in NPPs Safety Related Concrete Structures (원전 안전관련 콘크리트 구조물의 수명예측을 위한 재령계수에 대한 연구)

  • Lee, Choon-Min;Yoon, Eui-Sik;Kim, Seung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.136-142
    • /
    • 2019
  • Nuclear power plant concrete structures are in contact with the coast, and durability due to chloride attack is very important because it is used as cooling water by taking seawater. For this purpose, a 3-year long-term saltwater immersion test was carried out to evaluate chloride ion diffusion coefficient and age apponent (m) The m values of the foundation with 4,000 class was 0.35 ~ 0.39, similar to KCI or ACI suggested values. essential service water constructions and tunnels of 5,000 class were 0.44 ~ 0.53 and 6,000 class, and 0.62 of reactor containment buildings were similar to the proposed values of FIB. As a result of the prediction of the service life with the measured age coefficient, all the safety related concrete structures of the nuclear power plants satisfied the service life of more than 60 years.

An Experimental Study on Mechanical Properties and Failure Behavior of Plywood (Plywood의 기계적 특성 및 파손 거동 분석에 관한 실험적 연구)

  • Cha, Seung-Joo;Kim, Jeong-Dae;Kim, Jeong-Hyeon;Oh, Hoon-Kyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.335-342
    • /
    • 2019
  • The objective of this study is to analyze the mechanical properties of plywood used as a thermal insulating material for LNG CCS (Liquefied Natural Gas, Cargo Containment System). It is created by bonding an odd number of parallel and perpendicular direction for preventing contraction and expansion of wood. Also plywood is widely used as LNG CCS insulating material because of its durability, light weight and high stiffness. Since LNG CCS is loaded with liquid cargo, the impact load by sloshing during operation and the wide temperature range (room temperature, low temperature, cryogenic temperature) exposed during loading, unloading should be considered. The thickness of the plywood which is used for the membrane type MARKIII was selected as the thickness of the test specimen. In this present study, plywood is analyzed by the fracture behavior and mechanical properties of plywood by temperature and grain direction. In addition, it is necessary to analyze the fracture shape and predict the fracture strain by using regression model because the critical load may cause cracks inside the tank, which may affect the leakage of cryogenic liquid.

Analysis of Shear Behavior and Fracture Characteristics of Plywood in Cryogenic Environment (극저온 환경 하 플라이우드의 전단 거동 및 파손 특성 분석)

  • Son, Young-Moo;Kim, Jeong-Dae;Oh, Hoon-Kyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.394-399
    • /
    • 2019
  • Plywood is a laminated wood material where alternating layers are perpendicular to each other. It is used in a liquefied natural gas (LNG) carrier for an insulation system because it has excellent durability, a light weight, and high stiffness. An LNG cargo containment system (LNG CCS) is subjected to loads from gravity, sloshing impact, hydrostatic pressure, and thermal expansion. Shear forces are applied to an LNG CCS locally by these loads. For these reasons, the materials in an LNG CCS must have good mechanical performance. This study evaluated the shear behavior of plywood. This evaluation was conducted from room temperature ($25^{\circ}C$) to cryogenic temperature ($-163^{\circ}C$), which is the actual operating environment of an LNG storage tank. Based on the plywood used in an LNG storage tank, a shear test was conducted on specimens with thicknesses of 9 mm and 12 mm. Analyses were performed on how the temperature and thickness of the plywood affected the shear strength. Regardless of the thickness, the strength increased as the temperature decreased. The 9 mm thick plywood had greater strength than the 12 mm thick specimen, and this tendency became clearer as the temperature decreased.

Forklift Weight Measurement System using Anchor Bolt Type Strain Gauge Sensor (Anchor 볼트 형태의 Strain Gauge 센서를 이용한 지게차 적재 중량 측정 시스템)

  • Han, Chi-moon;Yim, Choon-Sik;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.200-206
    • /
    • 2019
  • The most frequent type of safety-accident in industry is the overturning of forklift. The leading cause of this accident is overload in forklift. Thus, it is needed to measure the weight on board of forklift. The most common method is based on load cell, and this method has the merit of high accuracy. However, high price is the disadvantage of this method. In this paper, we propose the new measurement system of the weight on board of forklift based on the strain gauge sensor, which has the disadvantage of low accuracy. The differentiation of the proposed system is that the shape of the strain gauge sensor customized for anchor bolt of forklift in order to improve the accuracy and durability. In system four strain gauge sensors are inserted into four anchor bolts. The test result shows that 1% error of measurement is obtained in the proposed anchor bolt type strain gauge sensors.

Analysis of Mechanical Properties of Wood Flours Composites to Improve the Strength of Truck Deck Floor Boards (트럭 Deck Floor Board의 강도향상을 위한 목분복합재의 기계적특성 분석)

  • Yun, Sung-Woo;Go, Sun-Ho;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2019
  • The deck floor of a the cargo truck becomesis damaged and aged due to the continuous loading of the loading cargo and external environmental factors. Floor boards made of wood and metal are often used. In the case of wood, the cost is high due to the use of imported wood, and the strength is easily deterioratesd due to environmental factors. In the case of metal materials, the durability is higher than that of wood, but problems are raised due to the effect of major factors that hinder the weight reduction, and the effects of corrosion. In order to replace this stucturestructural design, this study proposed a wood fiber composite using natural raw materials. Woody composites are being used as environmentally and friendly exterior materials with the combined advantages of plastic, and wood,; low cost and low density. However, due to the nature of the woody composites, the properties are differentdiffer depending on the contents of the matrix, reinforcing agent, additives, compatibilizer, etc. In this study, we investigate these problems through analysis of the microstructure and mechanical properties according to proper content and injection molding conditions. As a result, it is considered that the wood deck composite can replaced the current Deck Floor Boardreplace current deck floor boards through continuous continued research and results of this study.

Comparison of Microstructure & Mechanical Properties between Mn-Mo-Ni and Ni-Mo-Cr Low Alloy Steels for Reactor Pressure Vessels (원자로 압력용기용 Mn-Mo-Ni계 및 Ni-Mo-Cr계 저합금강의 미세조직과 기계적 특성 비교)

  • Kim, Min-Chul;Park, Sang Gyu;Lee, Bong-Sang
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.194-202
    • /
    • 2010
  • Application of a stronger and more durable material for reactor pressure vessels (RPVs) might be an effective way to insure the integrity and increase the efficiency of nuclear power plants. A series of research projects to apply the SA508 Gr.4 steel in ASME code to RPVs are in progress because of its excellent strength and durability compared to commercial RPV steel (SA508 Gr.3 steel). In this study, the microstructural characteristics and mechanical properties of SA508 Gr.3 Mn-Mo-Ni low alloy steel and SA508 Gr.4N Ni-Mo-Cr low alloy steel were investigated. The differences in the stable phases between these two low alloy steels were evaluated by means of a thermodynamic calculation using ThermoCalc. They were then compared to microstructural features and correlated with mechanical properties. Mn-Mo-Ni low alloy steel shows the upper bainite structure that has coarse cementite in the lath boundaries. However, Ni-Mo-Cr low alloy steel shows the mixture of lower bainite and tempered martensite structure that homogeneously precipitates the small carbides such as $M_{23}C_6$ and $M_7C_3$ due to an increase of hardenability and Cr addition. In the mechanical properties, Ni-Mo-Cr low alloy steel has higher strength and toughness than Mn-Mo-Ni low alloy steel. Ni and Cr additions increase the strength by solid solution hardening. In addition, microstructural changes from upper bainite to tempered martensite improve the strength of the low alloy steel by grain refining effect, and the changes in the precipitation behavior by Cr addition improve the ductile-brittle transition behavior along with a toughening effect of Ni addition.

Preparation and Thermal Degradation Behavior of WO3-TiO2 Catalyst for Selective Catalytic Reduction of NOx (NOx 제거용 WO3-TiO2 계 SCR 촉매 제조 및 열적열화거동연구)

  • Shin, Byeongkil;Kim, Janghoon;Yoon, Sanghyeon;Lee, Heesoo;Shin, Dongwoo;Min, Whasik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.596-600
    • /
    • 2011
  • Thermal degradation behavior of a $WO_3-TiO_2$ monolithic catalyst was investigated in terms of structural, morphological, and physico-chemical analyses. The catalyst with 4 wt.% $WO_3$ contents were prepared by a wet-impregnation method, and a durability test of the catalysts were performed in a temperature range between $400^{\circ}C$ and $800^{\circ}C$ for 3 h. An increase of thermal stress decreased the specific surface area, which was caused by grain growth and agglomeration of the catalyst particles. The phase transition from anatase to rutile occurred at around $800^{\circ}C$ and a decrease in the Brønsted acid sites was confirmed by structural analysis and physico-chemical analysis. A change in Brønsted acidity can affect to the catalytic efficiency; therefore, the thermal degradation behavior of the $WO_3-TiO_2$ catalyst could be explained by the transition to a stable rutile phase of $TiO_2$ and the decrease of specific surface area in the SCR catalyst.

Experimental Study on the Influence of Superplasticizer on the Early Hydration Properties of Cement Paste Containing Micro-POFA (감수제의 사용이 micro-POFA 혼입 시멘트 페이스트의 초기 수화 특성에 미치는 영향에 관한 실험적 연구)

  • Wi, Kwangwoo;Lee, Han-Seung;Lim, Seungmin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.269-279
    • /
    • 2021
  • Palm Oil Fuel Ash(POFA) has been widely used to replace Portland cement to enhance the mechanical properties and durability of concrete. However, it reduces the workability of concrete due to the high content of unburnt carbon and its angular shape requiring the usage of superplasticizer to ensure a proper flowability. In this study, effects of different types and dosage of superplasticizer on the early mechanical and hydration properties of cement paste containing micro-POFA were evaluated using mini-slump test, early compressive strength, TGA, XRD, and SEM. The results indicated that the flowability of cement paste containing micro-POFA reduced as the replacement ratio of micro-POFA increased. As the dosage of superplasticizer increased, the flowability was also increased. In addition, the usage of superplasticizer reduced the early compressive strength, and the strength decreased with an increase in the dosage of superplasticizer. It was confirmed that superplasticizer hindered the formation of C-S-H leading to a relative increase in the formation of Ca(OH)2.

Analysis of Chloride Content in Aqueous Solution and Mortar using Laser Induced Breakdown Spectroscopy (LIBS를 활용한 수용액과 모르타르 내 염화물량 분석)

  • Ryu, Hwa-Sung;Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.3
    • /
    • pp.189-194
    • /
    • 2021
  • LIBS has been attracting attention as an analytical method capable of real-time measurement without sample preparation. In this study, a Lab. scale LIBS device was fabricated to examine the applicability and reproducibility of LIBS in the analysis of chloride contents in mortar. The existing analysis method and LIBS analysis were performed simultaneously on the mortar test specimen with the chloride content adjusted. Compared to the chloride content condition of the mortar, the XRF and Potentiometric Titration results also showed a similar trend. As a result of LIBS analysis, chlorine ions were detected at a wavelength of 837.59 nm according to the chloride content condition. In order to improve the precision in various concentration ranges, the LIBS signal amplification of about 50 times through the electric field enhancement was implemented. Through the verification of the aqueous solution-based reproducibility, a high correlation between the LIBS signal strength and the Cl concentration was confirmed, and the possibility of applying LIBS to the durability diagnosis of concrete damage by chloride was confirmed.