DOI QR코드

DOI QR Code

Comparison of Microstructure & Mechanical Properties between Mn-Mo-Ni and Ni-Mo-Cr Low Alloy Steels for Reactor Pressure Vessels

원자로 압력용기용 Mn-Mo-Ni계 및 Ni-Mo-Cr계 저합금강의 미세조직과 기계적 특성 비교

  • 김민철 (한국원자력연구원 원자력재료연구부) ;
  • 박상규 (한국과학기술원 신소재공학과) ;
  • 이봉상 (한국원자력연구원 원자력재료연구부)
  • Received : 2009.05.05
  • Published : 2010.03.20

Abstract

Application of a stronger and more durable material for reactor pressure vessels (RPVs) might be an effective way to insure the integrity and increase the efficiency of nuclear power plants. A series of research projects to apply the SA508 Gr.4 steel in ASME code to RPVs are in progress because of its excellent strength and durability compared to commercial RPV steel (SA508 Gr.3 steel). In this study, the microstructural characteristics and mechanical properties of SA508 Gr.3 Mn-Mo-Ni low alloy steel and SA508 Gr.4N Ni-Mo-Cr low alloy steel were investigated. The differences in the stable phases between these two low alloy steels were evaluated by means of a thermodynamic calculation using ThermoCalc. They were then compared to microstructural features and correlated with mechanical properties. Mn-Mo-Ni low alloy steel shows the upper bainite structure that has coarse cementite in the lath boundaries. However, Ni-Mo-Cr low alloy steel shows the mixture of lower bainite and tempered martensite structure that homogeneously precipitates the small carbides such as $M_{23}C_6$ and $M_7C_3$ due to an increase of hardenability and Cr addition. In the mechanical properties, Ni-Mo-Cr low alloy steel has higher strength and toughness than Mn-Mo-Ni low alloy steel. Ni and Cr additions increase the strength by solid solution hardening. In addition, microstructural changes from upper bainite to tempered martensite improve the strength of the low alloy steel by grain refining effect, and the changes in the precipitation behavior by Cr addition improve the ductile-brittle transition behavior along with a toughening effect of Ni addition.

Keywords

Acknowledgement

Grant : 고강도/고인성 원자로용기강 및 밀림관 스테인리스강 개발

Supported by : 지식경제부

References

  1. S. G. Druce and B. C. Edwards, Nucl. Energy 19, 347 (1980)
  2. B. Chapelle, Nucl. Energy 31, 417 (1992)
  3. K. Suzuki, I. Sato, and H. Tsukada, Nucl. Eng. Design. 151, 523 (1994) https://doi.org/10.1016/0029-5493(94)90193-7
  4. X. Z. Zhang and J. F. Knott, Acta Mater. 47, 3483 (1999) https://doi.org/10.1016/S1359-6454(99)00200-1
  5. Y. R. Im, Ph.D thesis, Seoul National University (2001)
  6. Research Report, KAERI, CM-785 (2004)
  7. L. A. Norstrom, Met. Sci. 429, 429 (1976)
  8. Y. R. Im, Y. J. Oh, B. J. Lee, J. H. Hong, and H. C. Lee, J. Nucl. Mater. 297, 138 (2001) https://doi.org/10.1016/S0022-3115(01)00610-9
  9. ASTM E 1921-08 (2008)
  10. W. F. Smith, Metals and Materials, Interversion, Inc. (2003)
  11. S. G. Park, M. C. Kim, B. S. Lee, and D. M. Wee, J. Kor. Inst. Met. & Mater. 46, 771 (2008)
  12. P. DEB, K. D. Challenger, Metallography 17, 253 (1984) https://doi.org/10.1016/0026-0800(84)90061-2
  13. S. H. Kim, Y. R. Im, S. H. Lee, H. C. Lee, Y. J. Oh, and J. H. Hong, J. Kor. Inst. Met. Mater. 38, 771 (2000)
  14. B. V. Narasimha Rao and G. Thomas, Metall. Trans. A 11A, 441 (1980)
  15. W. C. Leslie, Metall. Trans. 3, 5 (1972) https://doi.org/10.1007/BF02680580
  16. M. C. Kim, S. G. Park, and B. S. Lee, ICAPP proc. 8230 (2008)
  17. M. Y. Tu, C. A. Hsu, W. H. Wang, and Y. F. Hsu, Mater. Chem. and Phy. 107, 418 (2008) https://doi.org/10.1016/j.matchemphys.2007.08.017
  18. Y. R. Im, Y. J. Oh, B. J. Lee, J. H. Hong, and H. C. Lee, J. Nucl. Mater. 297, 138 (2001) https://doi.org/10.1016/S0022-3115(01)00610-9
  19. M. K. Shin and J. H. Cho, J. Kor. Inst. Met. & Mater. 16, 477 (1978)
  20. W. Jolley, Trans. TMS-AIME 242, 306 (1968)