• 제목/요약/키워드: Dual-programming

검색결과 140건 처리시간 0.023초

POLYNOMIAL COMPLEXITY OF PRIMAL-DUAL INTERIOR-POINT METHODS FOR CONVEX QUADRATIC PROGRAMMING

  • Liu, Zhongyi;Sun, Wenyu;De Sampaio, Raimundo J.B.
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.567-579
    • /
    • 2009
  • Recently, Peng et al. proposed a primal-dual interior-point method with new search direction and self-regular proximity for LP. This new large-update method has the currently best theoretical performance with polynomial complexity of O($n^{\frac{q+1}{2q}}\;{\log}\;{\frac{n}{\varepsilon}}$). In this paper we use this search direction to propose a primal-dual interior-point method for convex quadratic programming (QP). We overcome the difficulty in analyzing the complexity of the primal-dual interior-point methods for convex quadratic programming, and obtain the same polynomial complexity of O($n^{\frac{q+1}{2q}}\;{\log}\;{\frac{n}{\varepsilon}}$) for convex quadratic programming.

  • PDF

ON SYMMETRIC DUALITY IN NONDIFFERENTIABLE MATHEMATICAL PROGRAMMING WITH F-CONVEXITY

  • AHMAD I.;HUSAIN Z.
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.371-384
    • /
    • 2005
  • Usual symmetric duality results are proved for Wolfe and Mond-Weir type nondifferentiable nonlinear symmetric dual programs under F-convexity F-concavity and F-pseudoconvexity F-pseudoconcavity assumptions. These duality results are then used to formulate Wolfe and Mond-Weir type nondifferentiable minimax mixed integer dual programs and symmetric duality theorems are established. Moreover, nondifferentiable fractional symmetric dual programs are studied by using the above programs.

THE CONVERGENCE OF A DUAL ALGORITHM FOR NONLINEAR PROGRAMMING

  • Zhang, Li-Wei;He, Su-Xiang
    • Journal of applied mathematics & informatics
    • /
    • 제7권3호
    • /
    • pp.719-738
    • /
    • 2000
  • A dual algorithm based on the smooth function proposed by Polyak (1988) is constructed for solving nonlinear programming problems with inequality constraints. It generates a sequence of points converging locally to a Kuhn-Tucker point by solving an unconstrained minimizer of a smooth potential function with a parameter. We study the relationship between eigenvalues of the Hessian of this smooth potential function and the parameter, which is useful for analyzing the effectiveness of the dual algorithm.

일반한계 선형계획법에서의 원내부점-쌍대단체법과 쌍대내부점-원단체법 (Primal-Interior Dual-Simplex Method and Dual-Interior Primal-Simplex Method In the General bounded Linear Programming)

  • 임성묵;김우제;박순달
    • 한국경영과학회지
    • /
    • 제24권1호
    • /
    • pp.27-38
    • /
    • 1999
  • In this paper, Primal-Interior Dual-Simplex method(PIDS) and Dual-Interior Primal-Simplex method(DIPS) are developed for the general bounded linear programming. Two methods were implemented and compared with other pricing techniques for the Netlib. linear programming problems. For the PIDS, it shows superior performance to both most nagative rule and dual steepest-edge method since it practically reduces degenerate iterations and has property to reduce the problem. For the DIPS, pt requires less iterations and computational time than least reduced cost method. but it shows inferior performance to the dynamic primal steepest-edge method.

  • PDF

다중 사용자 OFDM 시스템의 최적 부채널 및 비트 할당: Dual-Decomposition 방법 (The Optimal Subchannel and Bit Allocation for Multiuser OFDM System: A Dual-Decomposition Approach)

  • 박태형;임성빈;서만중
    • 한국통신학회논문지
    • /
    • 제34권1C호
    • /
    • pp.90-97
    • /
    • 2009
  • OFDM (Orthogonal Frequency Division Multiplexing) 전송방식의 장점은 높은 주파수 효율, RF간섭에 대한 강인성, 낮은 다중 경로 왜곡 등을 들 수 있다. 다중 사용자 OFDM의 채널용량을 확대하기 위해서는 사용자간의 부채널과 비트 할당의 효율적인 알고리즘을 개발하여야 한다. 본 연구에서는 다중 사용자의 전송요구량을 만족하는 최적 부채널 및 비트 할당 문제를 0-1 정수계획법 모형으로 형성하고, 원래 문제의 선형계획법 완화 (linear programming relaxation)문제를 dual-decomposition과 subgradient 알고리즘을 사용하여 해를 구하는 효과적인 알고리즘을 제시한다. 또한 dual-decomposition으로 구한 목적함수값은 원래 문제의 선형계획법 완화문제의 최적목적함수 간과 동일함을 증명하였다 모의실험을 통하여 다수의 문제에 대하여 원래 문제의 최적 목적항수값에 대한 dual-decomposition으로 구한 하한의 성능을 제시하였다. MQAM (M-ary Quadrature Amplitude Modulation)을 사용하고 3개의 독립적인 Rayleigh 다중 경로로 구성된 주파수 선택적 채널을 가정한 경우 MATLAB을 사용한 모의실험에서 0-1 정수계획 법으로 구한 최적해의 성능을 실험하였다.

MULTIOBJECTIVE CONTINUOUS PROGRAMMING CONTAINING SUPPORT FUNCTIONS

  • Husain, I.;Ahmed, A.;Rumana, G. Mattoo
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.603-619
    • /
    • 2009
  • Wolfe and Mond-Weir type dual to a nondifferentiable continuous programming containing support functions are formulated and duality is investigated for these two dual models under invexity and generalized invexity. A close relationship of our duality results with those of nondifferentiable nonlinear programming problem is also pointed out.

  • PDF

A Dual Problem and Duality Theorems for Average Shadow Prices in Mathematical Programming

  • Cho, Seong-Cheol
    • 한국경영과학회지
    • /
    • 제18권2호
    • /
    • pp.147-156
    • /
    • 1993
  • Recently a new concept of shadow prices, called average shadow price, has been developed. This paper provides a dual problem and the corresponding duality theorems justifying this new shadow price. The general duality framework is used. As an important secondary result, a new reduced class of price function, the pp. h.-class, has been developed for the general duality theory. This should be distinguished from other known reductions achieved in some specific areas of mathematical programming, in that it sustains the strong duality property in all the mathematical programs. The new general dual problem suggested with this pp. h.-class provides, as an optimal solution, the average shadow prices.

  • PDF

CONTINUOUS PROGRAMMING CONTAINING SUPPORT FUNCTIONS

  • Husain, I.;Jabeen, Z.
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.75-106
    • /
    • 2008
  • In this paper, we derive necessary optimality conditions for a continuous programming problem in which both objective and constraint functions contain support functions and is, therefore, nondifferentiable. It is shown that under generalized invexity of functionals, Karush-Kuhn-Tucker type optimality conditions for the continuous programming problem are also sufficient. Using these optimality conditions, we construct dual problems of both Wolfe and Mond-Weir types and validate appropriate duality theorems under invexity and generalized invexity. A mixed type dual is also proposed and duality results are validated under generalized invexity. A special case which often occurs in mathematical programming is that in which the support function is the square root of a positive semidefinite quadratic form. Further, it is also pointed out that our results can be considered as dynamic generalizations of those of (static) nonlinear programming with support functions recently incorporated in the literature.

  • PDF

OPTIMALITY CONDITIONS AND DUALITY FOR SEMI-INFINITE PROGRAMMING INVOLVING SEMILOCALLY TYPE I-PREINVEX AND RELATED FUNCTIONS

  • Jaiswal, Monika;Mishra, Shashi Kant;Al Shamary, Bader
    • 대한수학회논문집
    • /
    • 제27권2호
    • /
    • pp.411-423
    • /
    • 2012
  • A nondifferentiable nonlinear semi-infinite programming problem is considered, where the functions involved are ${\eta}$-semidifferentiable type I-preinvex and related functions. Necessary and sufficient optimality conditions are obtained for a nondifferentiable nonlinear semi-in nite programming problem. Also, a Mond-Weir type dual and a general Mond-Weir type dual are formulated for the nondifferentiable semi-infinite programming problem and usual duality results are proved using the concepts of generalized semilocally type I-preinvex and related functions.

선형계획을 위한 내부점법의 원문제-쌍대문제 로그장벽법 (A primal-dual log barrier algorithm of interior point methods for linear programming)

  • 정호원
    • 경영과학
    • /
    • 제11권3호
    • /
    • pp.1-11
    • /
    • 1994
  • Recent advances in linear programming solution methodology have focused on interior point methods. This powerful new class of methods achieves significant reductions in computer time for large linear programs and solves problems significantly larger than previously possible. These methods can be examined from points of Fiacco and McCormick's barrier method, Lagrangian duality, Newton's method, and others. This study presents a primal-dual log barrier algorithm of interior point methods for linear programming. The primal-dual log barrier method is currently the most efficient and successful variant of interior point methods. This paper also addresses a Cholesky factorization method of symmetric positive definite matrices arising in interior point methods. A special structure of the matrices, called supernode, is exploited to use computational techniques such as direct addressing and loop-unrolling. Two dense matrix handling techniques are also presented to handle dense columns of the original matrix A. The two techniques may minimize storage requirement for factor matrix L and a smaller number of arithmetic operations in the matrix L computation.

  • PDF