• 제목/요약/키워드: Drying efficiency

Search Result 348, Processing Time 0.032 seconds

Artificial Neural Network-based Model for Predicting Moisture Content in Rice Using UAV Remote Sensing Data

  • Sarkar, Tapash Kumar;Ryu, Chan-Seok;Kang, Jeong-Gyun;Kang, Ye-Seong;Jun, Sae-Rom;Jang, Si-Hyeong;Park, Jun-Woo;Song, Hye-Young
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.611-624
    • /
    • 2018
  • The percentage of moisture content in rice before harvest is crucial to reduce the economic loss in terms of yield, quality and drying cost. This paper discusses the application of artificial neural network (ANN) in developing a reliable prediction model using the low altitude fixed-wing unmanned air vehicle (UAV) based reflectance value of green, red, and NIR and statistical moisture content data. A comparison between the actual statistical data and the predicted data was performed to evaluate the performance of the model. The correlation coefficient (R) is 0.862 and the mean absolute percentage error (MAPE) is 0.914% indicate a very good accuracy of the model to predict the moisture content in rice before harvest. The model predicted values are matched well with the measured values($R^2=0.743$, and Nash-Sutcliffe Efficiency = 0.730). The model results are very promising and show the reliable potential to predict moisture content with the error of prediction less than 7%. This model might be potentially helpful for the rice production system in the field of precision agriculture (PA).

Sludge Minimization by Using Dewater and Thermal Treatment in the Water Treatment Plant (탈수(脫水) 및 건조기법(乾燥技法)을 이용한 정수장(淨水場) 슬러지 감량화(減量化))

  • Jun, Hang-Bae;Kim, Yong-Han;Kim, Ryang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.87-98
    • /
    • 1994
  • Sludge minimization in an water treatment plant can be achieved by optimizing a main water treatment process as well as by enhancing a thickening and a dewatering facilities. In this study, dewatering and drying techniques for reducing the quantity of the water sludge generated from the conventional water treatment plant in the local states were investigated by reducing its water content. Not only the types and dosages of polymers but also the mixing intensity of the mixtures of a concentrated sludge and polymers on the different pH were evaluated for the optimum dewatering conditions of the water sludge. Weight reduction of the water sludge was also tested at a given temperature range. The dewatering efficiency of the water sludge was not affected by the types of polymer but by mixing intensity(GT value) in this study. pH effect on dewaterbility of the water sludge took a major role at the neutral pH range. The optimal polymer dose was 1.5 mg-polymer/g-TSS(about 40mg/L as polymer). Dewaterability was enhanced at a lower mixing intensity(GTbelow 10,000 sec-1). Free water in the void of sludge cake was dried around $100^{\circ}C$, chemical bound water was evaporated around $320^{\circ}C$, and organic material was burned out at the range of 300 to $600^{\circ}C$. Ignition losses of the water sludge were varied 15 to 40 % as the raw water quality. The ignition loss due to the chemical bound water was 10-20% and the loss due to the organic material was 4-20% of the total ignition loss.

  • PDF

Remediation of Petroleum-Contaminated Soil by a Directly-Heated Thermal Desorption Process (직접 가열식 열탈착 공정을 이용한 유류오염토양의 정화)

  • Min, Hyeong-Sik;Yang, In-Ho;Jeon, Sang-Jo;Kim, Han-S.
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.5
    • /
    • pp.62-70
    • /
    • 2009
  • A field soil highly contaminated with petroleum hydrocarbons (JP-8 and diesel fuels) was employed for its remediation by a lab-scale thermal desorption process. The soil was collected in the vicinity of an underground storage tank in a closed military base and its contamination level was as high as 4,476 ppm as total petroleum hydrocarbon (TPH). A lab scale directly-heated low temperature thermal desorption (LTTD) system of 10-L capacity was developed and operated for the thermal treatment of TPH contaminated soils in this study. The desired operation temperature was found to be approximately $200-300^{\circ}C$ from the thermal gravimetric analysis of the contaminated field soils. The removal efficiencies higher than 90% were achieved by the LTTD treatment at $200^{\circ}C$ for 10 min as well as at $300^{\circ}C$ for 5 min. As the water content in the soils increased and therefore they were likely to be present as lumps, the removal efficiency noticeably decreased, indicating that a pre-treatment such as field drying should be required. The analysis of physical and chemical properties of soils before and after the LTTD treatment demonstrated that no significant changes occurred during the thermal treatment, supporting no needs for additional post-treatments for the soils treated by LTTD. The results presented in this study are expected to provide useful information for the field application and verification of LTTD for the highly contaminated geo-environment.

A Study on Composition and Utilization of Waste Heat Recovery System Assuming Aerobic Liquid-composting Fermentation heat (호기성 액비화 발효열을 가정한 폐열회수시스템 구성 및 활용 연구)

  • Lim, Ryugap;Jang, Jae Kyung;Kang, Taegyung;Son, Jinkwan;Lee, Donggwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.56-66
    • /
    • 2021
  • In this study, a waste heat recovery system was devised and the performances of components incorporated to recover the heat generated during the processing of aerobic liquid-composting in a livestock manure treatment facility were analyzed. In addition, the availability of recovered heat was confirmed. The heat generated by liquid fermentation in the livestock manure treatment facility was also checked. Experimental temperatures were set at 35, 40, and 45 ℃ based on considerations of the uniformity of aerobic liquid-composting fermentation tank temperature and its operating range (34.5 ~ 43.9 ℃). Recovered heat energies from the combined heat exchanger, which consisted of PE and STS pipes, were 53.5, 65.6, 74.4 MJ/h, The heat pump of capacity 5 RT was heated at 95.6, 96.1, 98.9 MJ/h and the heating COPs of the pump were 4.53, 4.62, and 4.65, respectively. The maximum hot water production capacity of the heat exchanger assuming a fermentation tank temperature of 45 ℃ confirmed an energy supply of 56 360 kcal/day. The heating capacity of the FCU linked to the heat storage tank was 20.8 MJ/h, and the energy utilization efficiency was 96.1%. When livestock manure was dried using the FCU, it was confirmed that the initial function rate was reduced by 50.5 to 45.8 % after drying.

Study on the Co-firing of Sewage Sludge to a 80 kWth-scale Pulverized Coal Combustion System (80 kWth급 미분탄 연소 시스템에서 하수슬러지 혼소시 연소 특성 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • Thermochemical treatment of sewage sludge is an energy-intensive process due to its high moisture content. To save the energy consumed during the process, the hydrothermal carbonization process for sewage sludge can be used to convert sewage sludge into clean solid fuel without pre-drying. This study is aimed to investigate co-firing characteristics of the hydrothermally carbonated sewage sludge (HCS) to a pulverized coal combustion system. The purpose of the measurement is to measure the pollutants produced during co-firing and combustion efficiency. The combustion system used in this study is a furnace with a down-firing swirl burner of a $80kW_{th}$ thermal input. Two sub-bituminous coals were used as a main fuel, and co-firing ratio of the sewage sludge was varied from 0% to 10% in a thermal basis. Experimental results show that $NO_x$ is 400 ~ 600 ppm, $SO_x$ is 600 ~ 700 ppm, and CO is less than 100 ppm. Experimental results show that stable combustion was achieved for high co-firing ratio of the HCS. Emission of $NO_x$ and $SO_x$ was decreased for higher co-firing ratio in spite of the higher nitrogen contents in the HCS. In addition, it was found that the pollutant emission is affected significantly by composition of the main fuel, regardless of the co-firing ratios.

Effect of Seed Moisture Contents and Cylinder Speed of Thresher on the Mechanical Damage and Germination of Soybean Seeds (콩의 기계 탈곡시 종실수분 함량과 급동속도에 관한 연구)

  • Moon, Yun-Ho;Hwang, Young-Hyun;Lee, Young-Ho;Kim, Seok-Dong;Hong, Eun-Hi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.2
    • /
    • pp.150-155
    • /
    • 1986
  • An experimental study was undertaken to obtain the basic information on the effect of seed moisture content and cylinder speed of thresher on the mechanical damage and seed germination in soybeans. The moisture content at maturity was the highest in stern and followed by seed and pod-shell for Hwang-keurnkong and also the highest in stern and followed by pod-shell and seed for Danyeobkong in that order. The variation in the moisture contents of stern, seed, and pod-shell in a day on the 7th day after maturity showed gradually decreasing trends from 7 :00 in the morning to 17 :00 in the afternoon. On the 14th day after maturity, the moisture content of pod-shell was higher than that of seeds up until 11 :00 in the morning but it was higher in the seeds after that. The greater the cylinder speed and the higher the moisture content of seeds, the higher the percentage of seeds damaged was resulted. At the same time, the percentage of seeds damaged was higher in Hwangkeumkong large seed sized than in Danyeobkong small seed sized at the same cylinder speed. Considering the seed yield, percentage of seeds damaged, percentage of seeds germinated, threshing efficiency and drying, etc., the appropriate cylinder speed was believed to be about II m per second and the most appropriate moisture contents of seeds for threshing were believed to be about 15-20%.

  • PDF

A Study on the Physical Characteristics of Grout Material for Backfilling Ground Heat Exchanger (지중 열교환기용 뒤채움재의 물리적 특성 연구)

  • Choi, Hang-Seok;Lee, Chul-Ho;Choi, Hyo-Pum;Woo, Sang-Baik
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.37-49
    • /
    • 2008
  • A geothermal heat pump system is a preferable alternative energy system in Korea because it uses the heat energy of the earth, which is environmentally friendly and inexhaustible. In order to characterize the thermal conductivity and viscosity of grout materials used for backfilling ground heat exchangers, nine bentonite grouts, one marine clay from Boryung, and cement grouts adapted in the United State have been considered in this study. The bentonite grouts indicate that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). In addition, material segregation can be observed when the viscosity of grout is relatively low. The marine clay turns out to be unsuitable for backfilling the ground heat exchanger due to its insufficient swelling potential. The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than that in the case of the bentonite grouts. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

Effect of Impregnation and Modification on Activated Carbon for Acetaldehyde Adsorption (아세트알데하이드 흡착을 위한 활성탄의 첨착 및 개질 효과)

  • Jin Chan Park;Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.472-478
    • /
    • 2023
  • In this study, the acetaldehyde removal characteristics of activated carbon (AC) for air purifier filters were investigated using metal catalysts-impregnation and functional group-modification method. The AC with a high specific surface area(1700 m2/g) and micropores was prepared by KOH activation of coconut charcoal and the efficiency of catalyst and functional group immobilization was examined by varying the drying conditions within the pores after immersion. The physical properties of the prepared activated carbon were analyzed by BET, ICP, EA, and FT-IR, and the acetaldehyde adsorption performances were investigated using gas chromatography (GC) at various impregnation and modified conditions. As the concentration of impregnation solution increased, the amount of impregnated metal catalysts increased, while the specific surface area showed a decreasing trend. The adsorption tests of the metal catalyst-impregnated and functional group-modified activated carbons revealed that excellent adsorption performance in compositions MgO10@AC, CaO10@AC, EU10@AC, and H-U3N1@AC, respectively. The MgO10@AC, which showed the highest adsorption performance, had a breakthrough time of 533.8 minutes and adsorption capacity of 57.4 mg/g for acetaldehyde adsorption. It was found that the nano-sized MgO catalyst on the activated carbon improved the adsorption performance by interacting with carbonyl groups of acetaldehyde.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.