DOI QR코드

DOI QR Code

Study on the Co-firing of Sewage Sludge to a 80 kWth-scale Pulverized Coal Combustion System

80 kWth급 미분탄 연소 시스템에서 하수슬러지 혼소시 연소 특성 연구

  • Chae, Taeyoung (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Lee, Jaewook (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Lee, Youngjae (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Yang, Won (Thermochemical Energy System Group, Korea Institute of Industrial Technology)
  • 채태영 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 이재욱 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 이영재 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 양원 (한국생산기술연구원 고온에너지시스템그룹)
  • Received : 2018.07.10
  • Accepted : 2018.11.27
  • Published : 2019.03.30

Abstract

Thermochemical treatment of sewage sludge is an energy-intensive process due to its high moisture content. To save the energy consumed during the process, the hydrothermal carbonization process for sewage sludge can be used to convert sewage sludge into clean solid fuel without pre-drying. This study is aimed to investigate co-firing characteristics of the hydrothermally carbonated sewage sludge (HCS) to a pulverized coal combustion system. The purpose of the measurement is to measure the pollutants produced during co-firing and combustion efficiency. The combustion system used in this study is a furnace with a down-firing swirl burner of a $80kW_{th}$ thermal input. Two sub-bituminous coals were used as a main fuel, and co-firing ratio of the sewage sludge was varied from 0% to 10% in a thermal basis. Experimental results show that $NO_x$ is 400 ~ 600 ppm, $SO_x$ is 600 ~ 700 ppm, and CO is less than 100 ppm. Experimental results show that stable combustion was achieved for high co-firing ratio of the HCS. Emission of $NO_x$ and $SO_x$ was decreased for higher co-firing ratio in spite of the higher nitrogen contents in the HCS. In addition, it was found that the pollutant emission is affected significantly by composition of the main fuel, regardless of the co-firing ratios.

하수슬러지의 열화학적 처리는 수분을 제거하여 연료로 사용되는 하수슬러지의 수분 함량을 낮추어 주는 기술이다. 열화학적 처리된 하수슬러지는 열량이 높아지기 때문에 에너지 집약적 과정이라고 할 수 있다. 이러한 공정 중에 소비되는 에너지를 절약하기 위해 하수슬러지의 수열 탄화 공정을 사용하였다. 수열탄화 공정은 하수슬러지를 사전 건조 없이 깨끗한 고체연료로 전환할 수 있다. 본 연구는 수열탄화 하수슬러지와 미분탄 연소 시스템의 혼소 특성을 조사하는 것을 목적으로 한다. 혼소 시 생성되는 유해물질 및 연소 효율의 변화를 측정하는 것을 목적으로 한다. 본 연구에 사용 된 연소 시스템은 $80kW_{th}$급 연소로로서 1기의 선회류 버너가 장착되어 있다. 두 가지의 석탄을 주 연료로 사용하였고, 하수슬러지의 혼소율은 열량 기준 0% ~ 10%까지 진행하였다. 실험 결과 $NO_x$는 400 ~ 600 ppm, $SO_x$는 600 ~ 700 ppm 사이를 유지하였고, CO는 100 ppm 전후로 일정하게 유지되어 안정적인 연소를 확인할 수 있었다. 하수슬러지를 혼소할 경우, 혼소율이 증가할수록 $NO_x$$SO_x$의 배출량도 증가하였으나 그 편차가 크지 않았다. 연소 배가스에 포함된 오염 물질 배출은 혼소 비율 보다 주 연료인 석탄의 조성에 의해 크게 영향을 받는 것으로 밝혀졌다.

Keywords

CJGSB2_2019_v25n1_74_f0001.png 이미지

Figure 1. Schematic diagram of the 80 kWth down firing furnace system set-up.

CJGSB2_2019_v25n1_74_f0002.png 이미지

Figure 2. Thermogravimetric analysis (TGA) and derivative thermo-gravimetric (DTG) of coals and sewage sludges.

CJGSB2_2019_v25n1_74_f0003.png 이미지

Figure 3. Temperature of IN/HCS co-firing case.

CJGSB2_2019_v25n1_74_f0004.png 이미지

Figure 4. CO concentration (ppm).

CJGSB2_2019_v25n1_74_f0005.png 이미지

Figure 5. NOx concentration at O2 6%.

CJGSB2_2019_v25n1_74_f0006.png 이미지

Figure 6. SOx concentration at O2 6%.

Table 3. Experimental conditions for co-firing

CJGSB2_2019_v25n1_74_t0001.png 이미지

Table 1. Composition of fuels

CJGSB2_2019_v25n1_74_t0002.png 이미지

Table 2. Experimental condition for hydrothermal carbonization sewage sludge

CJGSB2_2019_v25n1_74_t0003.png 이미지

Table 4. Combustion efficiency by co-firing rate

CJGSB2_2019_v25n1_74_t0004.png 이미지

Table 5. Concentration of O2 and CO

CJGSB2_2019_v25n1_74_t0005.png 이미지

References

  1. Heinzel, H., Siegle, V., Spliethoff, H., and Hein, K., "Investigation of Slagging in Pulverized Fuel co-Combustion of Biomass and Coal at a Pilot-Scale Test Facility," Fuel Proc. Technol., 54, 109-125 (1998). https://doi.org/10.1016/S0378-3820(97)00063-5
  2. Cenni, R., Frandsen, F., Gerhardt, T., Splietho, H., and Heina, K., "Study on Trace Metal Partitioning in Pulverized Combustion of Bituminous Coal and Dry Sewage Sludge," Waste Manage., 18, 433-444 (1998). https://doi.org/10.1016/S0956-053X(98)00127-5
  3. Werther, J., and Ogada, T., "Sewage Sludge Combustion," Prog. Energy and Combust. Sci., 25, 55-116 (1999). https://doi.org/10.1016/S0360-1285(98)00020-3
  4. Yoshihiko, N., Lian, Z., Takeo, S., Chikao, K., and Megumi, M., "Transformation of Mineral and Emission of Particulate Matters During Co-Combustion of Coal with Sewage Sludge," Fuel, 83, 751-764 (2004). https://doi.org/10.1016/j.fuel.2003.09.022
  5. Amand, L., and Leckner, B., "Co-combustion of Sewage Sludge with Wood/Coal in a Circulating Fluidized Bed Boiler-A Study of Gaseous Emissions," Chalmers University of Technology, Sweden, (2001).
  6. Salatino, P., "Fluidized Bed Combustion of Pelletized Biomass and Waste-Derived Fuels," Combust. and Flame, 155, 21-36 (2008). https://doi.org/10.1016/j.combustflame.2008.05.013
  7. Liang, W., Terese, L., and Ehsan, H., "Effect of Sewage Sludge Addition on Potassium Release and Ash Transformation during Wheat Straw Combustion," Chem. Eng. Trans, 2283-9216 (2014).
  8. Hong, Y., and Ichiro, N., "Combustion Characteristics of Dried Sewage Sludge and Control of Trace-Metal Emission," Energy & Fuels, 19, 2298-2303 (2005). https://doi.org/10.1021/ef0501039
  9. Lars-Erik, A., Leckner, B., David, E., and Claes, T., "Deposits on Heat Transfer Tubes during Co-Combustion of Biofuels and Sewage Sludge," Fuel, 85, 1313-1322 (2006). https://doi.org/10.1016/j.fuel.2006.01.001
  10. McIlveen-Wright, D., Huang, Y., Rezvani, S., and Wang, Y., "A Technical and Environmental Analysis of Co-Combustion of Coal and Biomass in Fluidised Bed Technologies," Fuel, 86, 2032-2042(2007). https://doi.org/10.1016/j.fuel.2007.02.011
  11. Davidsson, K., Amand, L., Elled, A., and Leckner, B., "Effect of Cofiring Coal and Biofuel with Sewage Sludge on Alkali Problems in a Circulating Fluidized Bed Boiler," Energy & Fuels, 21, 3180-3188 (2007). https://doi.org/10.1021/ef700384c
  12. Tomasz, K., Marco, M., Michael, I., and Roman, W., "Investigation of Ash Deposit Formation during Co-Firing of Coal with Sewage Sludge, Saw-Dust and Refuse Derived Fuel," Fuel, 87, 2824-2837 (2008). https://doi.org/10.1016/j.fuel.2008.01.024
  13. Fouad, A., and Jaroslaw, Z., "An Evaluation of Biomass Co-Firing in Europe," Biomass and Bioenergy, 34, 620-629 (2010). https://doi.org/10.1016/j.biombioe.2010.01.004
  14. Aho, M., Yrjas, P., Taipale, R., Hupa, M., and Silvennoinen, J., "Reduction of Superheater Corrosion by Co-Firing Risky Biomass with Sewage Sludge," Fuel, 89, 2376-2386 (2010). https://doi.org/10.1016/j.fuel.2010.01.023
  15. Chao, H., Apostolos, G., and Jing, Y., "Conversion of Sewage Sludge to Clean Solid Fuel Using Hydrothermal Carbonization: Hydrochar Fuel Characteristics and Combustion Behavior," Appl. Energy, 111, 257-266 (2013). https://doi.org/10.1016/j.apenergy.2013.04.084
  16. Ganesh, K., Zhengang, L., Akshay, J., Srinivasan, M., and Rajasekhar, B., "Hydrothermal Carbonization of Sewage Sludge for Energy Production with Coal," Fuel, 111, 201-210 (2013). https://doi.org/10.1016/j.fuel.2013.04.052
  17. Eyser, C., Palmuc, K., Schmidt, T., and Tuerka, J., "Pharmaceutical Load in Sewage Sludge and Biochar Produced by Hydrothermal Carbonization," Sci. Total Environ., 537, 180-186 (2015). https://doi.org/10.1016/j.scitotenv.2015.08.021
  18. Chuan, P., Yunbo, Z., Yun, Z., Bibo, X., Tengfei, W., Caiting, L., and Guangming, Z., "Production of Char from Sewage Sludge Employing Hydrothermal Carbonization: Char Properties," Combust. Behavior and Thermal Characteristics, Fuel, 176, 110-118 (2016). https://doi.org/10.1016/j.fuel.2016.02.068
  19. Liu, G., Yan, L., Pozzobon, E., Higgins, B., Milewicz, M., and Repcznski, A., "High Portion Biomass Co-Firing and $NO_x$ Reduction in a Coal-Fired Boiler," Clean Coal & Fuel Systems 2012, 192-205 (2012).
  20. Sung, Y., Lee, S., Kim, C., Jun, D., Moon, C., Choi, G., and Kim, D., "Synergistic Effect of Co-Firing Woody Biomass with Coal on $NO_x$ Reduction and Burnout during Air-Staged Combustion Experimental Thermal and Fluid Science," ETF Sciencev., 71, 114-125 (2016).