• Title/Summary/Keyword: Dry etching

Search Result 407, Processing Time 0.034 seconds

Fabrication and Characterization of Transparent Piezoresistors Using Carbon Nanotube Film (탄소나노튜브 필름을 이용한 투명 압저항체의 제작 및 특성 연구)

  • Lee, Kang-Won;Lee, Jung-A;Lee, Kwang-Cheol;Lee, Seung-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1857-1863
    • /
    • 2010
  • We present the fabrication and characterization of transparent carbon nanotube film (CNF) piezoresistors. CNFs were fabricated by vacuum filtration methods with 65?92% transmittance and patterned on Au-deposited silicon wafer by photolithography and dry etching. The patterned CNFs were transferred onto poly-dimethysiloxane (PDMS) using the weak adhesion property between the silicon wafer and the Au layer. The transferred CNFs were confirmed to be piezoresistors using the equation of concentrated-force-derived resistance change. The gauge factor of the CNFs was measured to range from 10 to 20 as the resistance of the CNFs increased with applied pressure. In polymer microelectromechanical systems, CNF piezoresistors are the promising materials because of their high sensitivity and low-temperature process.

Inductive Micro Thin Film Sensor for Metallic Surface Crack Detection (금속 표면결함 검출용 자기유도 마이크로 박막 센서)

  • Kim, Ki-Hyeon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.5
    • /
    • pp.395-400
    • /
    • 2008
  • Alternating magnetic field was used for detection of surface flaws on nonmagnetic and magnetic metallic specimens. The nondestructive sensor probe was composed of the planar coil with inductive magnetic thin film yoke as a sensing component and a single straight typed exciting coil. The planar inductive coil sensor with magnetic yoke was fabricated by sputtering, electroplating, dry etching and photolithography process. The alternative currents with the range of 0.1A to 1.0A (0.7 MHz to 1.8 MHz) were applied to the exciting coil. The specimens were prepared with the slit shaped artificial surface flaws (minimum depth and width; 0.5 mm) on metallic plate (Al; nonmagnetic metal and FeC; magnetic metal). The detected signal for the positions and shapes of surface flaws on specimens were obtained with high sensitivity and high signal to ratio. The measured output signals by the non-contacted scanning on surface of FeC specimen with micron-sized crack were converted to the images of the flaws. And these results were compared with the optical images, respectively.

Magnetic Bio-Sensor Using Planar Hall Effect (평면홀 효과를 이용한 자기 바이오센서)

  • Oh, Sun-Jong;Hung, Tran Quang;Kumar., S. Ananda;Kim, Cheol-Gi;Kim, Dong-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.5
    • /
    • pp.421-426
    • /
    • 2008
  • The magnetic bio-sensor used the PHR (planar hall resistance) effect generated by the free layer in spin-valve giant magnetoresistance structure of Ta/NiFe/CoFe/Cu/NiFe/IrMn/Ta. The PHR element with micrometer size was fabricated through the photolithograph and dry etching process. The PHR signal with magnetic field was measured under the conditions of with and without single magnetic bead. A single magnetic bead of diameter $2.8\;{\mu}m$ was successfully detected using the PHR sensor. Therefore, the high resolution PHR sensor can be applied to bio-sensor application utilizing the output voltage variation of the PHR signals in the presence and absence of a single magnetic bead.

A Study on the Polysilicon Etch Residue by XPS and SEM (XPS와 SEM을 이용한 폴리실리콘 표면에 형성된 잔류막에 대한 연구)

  • 김태형;이종완;최상준;이창원
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.169-175
    • /
    • 1998
  • The plasma etching of polysilicon was performed with the HBr/$Cl_2/He-O_2$ gas mixture. The residual layers after photoresist strip were investigated using x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The etch residue was identified as silicon oxide deposited on the top of the patterned polysilicon. In order to clarify the formation mechanism of the etch residue, the effects of various gas mixtures such as $Cl_2/He-O_2$and HBr/$Cl_2$were investigated. We found that the etch residue is well formed in the presence of oxygen, suggesting that the etch residue is caused by the reaction of oxvgen and non-volatile silicon halide compounds. Wet cleaning and dry etch cleaning processes were applied to remove the polysilicon etch residue, which can affect the electrical characteristics and further device processes. XPS results show that the wet cleaning is suitable for the removal of the etch residue.

  • PDF

Fabrication of Micron-sized Organic Field Effect Transistors (마이크로미터 크기의 유기 전계 효과 트랜지스터 제작)

  • Park, Sung-Chan;Huh, Jung-Hwan;Kim, Gyu-Tae;Ha, Jeong-Sook
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • In this study, we report on the novel lithographic patterning method to fabricate organic thin film field effect transistors (OTFTs) based on photo and e-beam lithography with well-known silicon technology. The method is applied to fabricate pentacene-based organic field effect transistors. Owing to their solubility, sub-micron sized patterning of P3HT and PEDOT has been well established via micromolding in capillaries and inkjet printing techniques. Since the thermally deposited pentacene cannot be dissolved in solvents, other approach was done to fabricate pentacene FETs with a very short channel length (~30 nm), or in-plane orientation of pentacene molecules by using nanometer-scale periodic groove patterns as an alignment layer for high-performance pentacene devices. Here, we introduce $Al_2O_3$ film grown via atomic layer deposition method onto pentacene as a passivation layer. $Al_2O_3$ passivation layer on OTFTs has some advantages in preventing the penetration of water and oxygen and obtaining the long-term stability of electrical properties. AZ5214 and ma N-2402 were used as a photo and e-beam resist, respectively. A few micrometer sized lithography patterns were transferred by wet and dry etching processes. Finally, we fabricated micron sized pentacene FETs and measured their electrical characteristics.

A Study on the Fracture Behavior of Quartz Glass(II) (석영 유리의 파괴 거동에 관한 연구(II))

  • Choi, Seong-Dae;Cheong, Seon-Hwan;Kwon, Hyun-Kyu;Jeong, Young-Kwan;Hong, Yong-Bae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.213-219
    • /
    • 2007
  • Glass-to-metal contact should be prevented in the design of any structural glass component. Because glass is extremely brittle and will fracture readily if even a small point load is applied. If the assembly includes a glass component supported by metallic structure, designers should provide a pliable interface of some kind between the two parts. But there happens high demand of glass-to metal contact in semiconductor industries due to adoption of dry cleaning process as one of the good solution to reduce running cost - carry out equipments cleaning with high corrosive and etching gas such as CF4 with keeping process temperature as the same as high service temperature. Therefore the quartz glass have to be received compression by direct contact with metal as the form of weight itself and vacuum pressure and fatigue by vibrations caused by process during the process. In this paper investigation will be carried out on fracture behavior of quartz glass contacted with metal directly under local load and fatigue given by process vibration with apparatus which can give $lox{\backslash}cal$ load and vibration through PZT ceramics to give guideline to prevent unintended fracture of quartz glass.

  • PDF

Thermal Oxidation of Porous Silicon (다공질 실리콘 (Porous Silicon) 의 열산화)

  • Yang, Cheon-Soon;Park, Jeong-Yong;Lee, Jong-Hyun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.106-112
    • /
    • 1990
  • The progress of oxidation of a porous silicon layer(PSL) was studied by examining the temperature dependence of the oxidation and the infrared absorption spectra. Thick OPSL(oxidized porous silicon layer). which has the same properties as thermal $SiO_{2}$ of bulk silicon, is formed in a short time by two steps wet oxidation of PSL at $700^{\circ}C$, 1 hr and $1100^{\circ}C$, 1 hr. Etching rate, breakdown strength of the OPSL are strongly dependent on the oxidation temperature, oxidation atmosphere. And its breakdown field was ${1\MV/cm^-2}$ MV/cm The oxide film stress was determined through curvature measurement using a dial gauge. During oxidation at temperature above $1000^{\circ}C$ in dry $O_{2}$, stress on the order of ${10^9}\dyne/{cm^2}{-10^10}\dyne/{cm^2}$ are generated in the OPSL.

  • PDF

Comparison of Surface Passivation Layers on InGaN/GaN MQW LEDs

  • Yang, Hyuck-Soo;Han, Sang-Youn;Hlad, M.;Gila, B.P.;Baik, K.H.;Pearton, S.J.;Jang, Soo-Hwan;Kang, B.S.;Ren, F.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.131-135
    • /
    • 2005
  • The effect of different surface passivation films on blue or green (465-505 nm) InGaN/GaN multi-quantum well light-emitting diodes (LEDs) die were examined. $SiO_2$ or $SiN_x$ deposited by plasma enhanced chemical vapor deposition, or $Sc_2O_3$ or MgO deposited by rf plasma enhanced molecular beam epitaxy all show excellent passivation qualities. The forward current-voltage (I-V) characteristics were all independent of the passivation film used, even though the MBE-deposited films have lower interface state densities ($3-5{\times}10^{12}\;eV^{-1}\;cm^{-2}$) compared to the PECVD films (${\sim}10^{12}\;eV^{-1}\;cm^{-2}$), The reverse I-V characteristics showed more variation, hut there was no systematic difference for any of the passivation films, The results suggest that simple PECVD processes are effective for providing robust surface protection for InGaN/GaN LEDs.

Analysis of a Novel Self-Aligned ESD MOSFET having Reduced Hot-Carrier Effects (Hot-Carrier 현상을 줄인 새로운 구조의 자기-정렬된 ESD MOSFET의 분석)

  • 김경환;장민우;최우영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.21-28
    • /
    • 1999
  • A new method of making high speed self-aligned ESD (Elevated Source/Drain) MOSFET is proposed. Different from the conventional LDD (Lightly-Doped Drain) structure, the proposed ESD structure needs only one ion implantation step for the source/drain junctions, and makes it possible to modify the depth of the recessed channel by use of dry etching process. This structure alleviates hot-carrier stress by use of removable nitride sidewall spacers. Furthermore, the inverted sidewall spacers are used as a self-aligning mask to solve the self-align problem. Simulation results show that the impact ionization rate ($I_{SUB}/I_{D}$) is reduced and DIBL (Drain Induced Barrier Lowering) characteristics are improved by proper design of the structure parameters such as channel depth and sidewall spacer width. In addition, the use of removable nitride sidewall spacers also enhances hot-carrier characteristics by reducing the peak lateral electric field in the channel.

  • PDF

Chemiresistive Sensor Array Based on Semiconducting Metal Oxides for Environmental Monitoring

  • Moon, Hi Gyu;Han, Soo Deok;Kang, Min-Gyu;Jung, Woo-Suk;Jang, Ho Won;Yoo, Kwang Soo;Park, Hyung-Ho;Kang, Chong Yun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.15-18
    • /
    • 2014
  • We present gas sensing performance based on $2{\times}2$ sensor array with four different elements ($TiO_2$, $SnO_2$, $WO_3$ and $In_2O_3$ thin films) fabricated by rf sputter. Each thin film was deposited onto the selected $SiO_2$/Si substrate with Pt interdigitated electrodes (IDEs) of $5{\mu}m$ spacing which were fabricated on a $SiO_2$/Si substrate using photolithography and dry etching. For 5 ppm $NO_2$ and 50 ppm CO, each thin film sensor has a different response to offers the distinguishable response pattern for different gas molecules. Compared with the conventional micro-fabrication technology, $2{\times}2$ sensor array with such remarkable response pattern will be open a new foundation for monolithic integration of high-performance chemoresistive sensors with simplicity in fabrication, low cost, high reliablity, and multifunctional smart sensors for environmental monitoring.