• Title/Summary/Keyword: Drought treatment

Search Result 214, Processing Time 0.03 seconds

Amended Soil with Biopolymer Positively Affects the Growth of Camelina sativa L. Under Drought Stress (가뭄 조건 하에서 바이오폴리머 혼합 토양이 Camelina sativa L.의 생장에 미치는 긍정적 영향)

  • Lim, Hyun-Gyu;Kim, Hyun-Sung;Lee, Hyeon-Sook;Sin, Jung-Ho;Kim, Eun-Suk;Woo, Hyo-Seop;Ahn, Sung-Ju
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.163-173
    • /
    • 2018
  • The biopolymer (BP) used in this study is mainly composed of xanthan gum and ${\beta}$-glucan derived from microorganism and has been introduced as a novel material for soil stabilization. However, the broad applicability of BP has been suggested in the field of geotechnical engineering while little information is available about the effects of BP on the vegetation. The goal of this study is to find the BP effects on the growth of Camelina sativa L. (Camelina) under drought condition. For more thorough evaluation of BP effects on the plant growth, we examined not only morphological but also physiological traits and gene expression patterns. After 25 days of drought treatment from germination in the soil amended with 0, 0.25, 0.5, and 1% BP, we observed that the BP concentration was strongly correlated the growth of Camelina. When plants were grown under drought stress, Camelina in 0.5% BP mixture showed better physiological parameters of the leaf stomatal conductance, electrolyte leakage and relative water content compared to those in control soil without BP. Plant recovery rate after re-watering was higher and the development of lateral root was lower in BP amended soil. RNA expression of Camelina leaf treated with/without drought for 7 and 10 days showed that aquaporin genes transporting solutes at bio-membrane, CsPIP1;4, 2;1, 2;6 and TIP1;2, 2;1, were induced more in the plants with BP amendment and drought treatment. These results suggest that the soil amended with BP has a positive effect on the transport of nutrients and waters into Camelina by improving water retention in soil under drought condition.

Mitigation Effects of Foliar-Applied Hydrogen Peroxide on Drought Stress in Sorghum bicolor (과산화수소 엽면 처리에 의한 수수에서 한발 스트레스 완화 효과)

  • Shim, Doo-Do;Lee, Seung-Ha;Chung, Jong-Il;Kim, Min Chul;Chung, Jung-Sung;Lee, Yeong-Hun;Jeon, Seung-Ho;Song, Gi-Eun;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.113-123
    • /
    • 2020
  • Global climatic change and increasing climatic instability threaten crop productivity. Due to climatic change, drought stress is occurring more frequently in crop fields. In this study, we investigated the effect of treatment with hydrogen peroxide (H2O2) before leaf development on the growth and yield of sorghum for minimizing the damage of crops to drought. To assess the effect of H2O2 on the growth of sorghum plant, 10 mM H2O2 was used to treat sorghum leaves at the 3-leaf stage during growth in field conditions. Plant height, stem diameter, leaf length, and leaf width were increased by 7.6%, 9.6%, 8.3% and 11.5%, respectively. SPAD value, chlorophyll fluorescence (Fv/Fm), photosynthetic rate, stomatal conductance, and transpiration rate were increased by 3.0%, 4.9%, 26.0%, 23.4% and 12.7%, respectively. The amount of H2O2 in the leaf tissue of sorghum plant treated with 10 mM H2O2 was 0.7% of the applied amount after 1 hour. The level increased to approximately 1.0% after 6 hours. The highest antioxidant activity measured by the Oxygen Radical Absorbance Capacity assay was 847.3 µmol·g-1 at 6 hour after treatment. However, in the well-watered condition, the concentration of H2O2 in the plant treated by the foliar application of H2O2 was 227.8 µmol·g-1 higher than that of the untreated control. H2O2 treatment improved all the yield components and yield-related factors. Panicle length, plant dry weight, panicle weight, seed weight per plant, seed weight per unit area, and thousand seed weight were increased by 8.8%, 18.0%, 24.4%, 24.7%, 29.9% and 7.1%, respectively. Proteomic analysis showed that H2O2 treatment in sorghum increased the tolerance to drought stress and maintained growth and yield by ameliorating oxidative stress.

Enhanced Salt Stress Tolerance in Transgenic Potato Plants Expressing IbMYB1, a Sweet Potato Transcription Factor

  • Cheng, Yu-Jie;Kim, Myoung-Duck;Deng, Xi-Ping;Kwak, Sang-Soo;Chen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1737-1746
    • /
    • 2013
  • IbMYB1, a transcription factor (TF) for R2R3-type MYB TFs, is a key regulator of anthocyanin biosynthesis during storage of sweet potatoes. Anthocyanins provide important antioxidants of nutritional value to humans, and also protect plants from oxidative stress. This study aimed to increase transgenic potatoes' (Solanum tuberosum cv. LongShu No.3) tolerance to environmental stress and enhance their nutritional value. Transgenic potato plants expressing IbMYB1 genes under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SM plants) were successfully generated through Agrobacterium-mediated transformation. Two representative transgenic SM5 and SM12 lines were evaluated for enhanced tolerance to salinity, UV-B rays, and drought conditions. Following treatment of 100 mM NaCl, seedlings of SM5 and SM12 lines showed less root damage and more shoot growth than control lines expressing only an empty vector. Transgenic potato plants in pots treated with 400 mM NaCl showed high amounts of secondary metabolites, including phenols, anthocyanins, and flavonoids, compared with control plants. After treatment of 400 mM NaCl, transgenic potato plants also showed high DDPH radical scavenging activity and high PS II photochemical efficiency compared with the control line. Furthermore, following treatment of NaCl, UV-B, and drought stress, the expression levels of IbMYB1 and several structural genes in the flavonoid biosynthesis such as CHS, DFR, and ANS in transgenic plants were found to be correlated with plant phenotype. The results suggest that enhanced IbMYB1 expression affects secondary metabolism, which leads to improved tolerance ability in transgenic potatoes.

Physiological responses to drought stress of transgenic Chinese cabbage expressing Arabidopsis H+-pyrophosphatase (애기장대 H+-pyrophosphatase 발현 형질전환 배추의 건조스트레스에 대한 생리적 반응)

  • Jeong, Mihye;Kang, In-Kyu;Kim, Chang Kil;Park, Kyung Il;Choi, Cheol;Han, Jeung-Sul
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.156-162
    • /
    • 2013
  • Plant tolerance to drought is a beneficial trait for stabilizing crop productivity under water deficits. Here we report that genetically engineered Chinese cabbage expressing Arabidopsis $H^+$-pyrophosphatase (AVP1) shows enhanced physiological parameters related to drought tolerance. In comparison with wild type plants under soil water deficit stress created by cessation of irrigation, soil water potential in pot with AVP1-expressing plants was more rapidly decreased that might lead to increased relative water content in leaves, while both genotypes had indistinguishable wilting phenotypes. Transgenic plants subjected to drought treatment also exhibited higher photosystem II quantum yield in addition to lower electrolyte leakage and $H_2O_2-3,3^{\prime}$-diaminobenzidine content when compared to wild type plants.

Conflicting Physiological Characteristics and Aquaporin (JcPIP2) Expression of Jatropha (Jatropha curcas L.) as a Bio-energy Crop under Salt and Drought Stresses (바이오에너지 작물 소재로서 자트로파의 염과 가뭄 스트레스 하에서 상반되는 생리적 특성과 아쿠아포린(JcPIP2)의 발현)

  • Jang, Ha-Young;Lee, Ji-Eun;Jang, Young-Seok;Ahn, Sung-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.183-191
    • /
    • 2011
  • This study was undertaken to collect basic knowledge of Jatropha which is one of bio-energy crops, based on the understanding of physiological and molecular aspects under salt and drought conditions. The treatments were followed as: 100, 200 and 300 mM NaCl for salt stress and 5, 10, 20 and 30% PEG for drought stress for 8 days, respectively. Leaf growth, stomatal conductance, chlorophyll fluorescence and gene expression of aquaporin (JcPIP2) of Jatropha were investigated. From 2 days after treatments, plants treated with higher than 100 mM NaCl and 10% PEG respectively were significantly suppressed in leaf length, width, and stomatal conductance, but 5% PEG treatment showed that plant growth was improved more than control plant. Semi-quantitative RT-PCR analyses revealed that the JcPIP2 gene was expressed in root, stem, cotyledon and leaves. It was not detected in leaves at 200 and 300 mM NaCl treatments. However, transcripts of JcPIP2 were induced in roots and stems under salt and drought conditions compared to those of healthy plants. Therefore, it was concluded that JcPIP2 plays an important role in improving drought tolerance.

Physiological Evaluation of Transgenic Rice Developed for Drought Tolerance

  • Ghimiren Sita Ram;Park Sang-Kyu;Kang Dong-Jin;Lee In-Jung;Shin Dong-Hyun;Kim Sung-Uk;Kim Kil-Ung
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.133-137
    • /
    • 2006
  • Evaluation of physiological performance of trehalose-producing transgenic rice line was conducted to investigate drought tolerance at early growth stage. Under artificially induced drought condition of 8% polyethylene glycol 6000, this transgenic rice line had leaf photosynthetic rate of 11.08 uml CO$_2$ $m^{-2}s^{-1}$, leaf transpiration rate of 8.38 mmol $H_2O$ $m^{-2}s^{-1}$ and leaf water potential of -1.12 MPa after 96 hours of treatment. Nakdongbyeo, the parent of this tyansgenic rice line, had photosynthetic rate of 15.42 $\mu$mol CO$_2$ $m^{-2}s^{-1}$, leaf transpiration rate of 8,04 mmol $H_2O$ $m^{-2}s^{-1}$ and leaf water potential of -0.88 MPa. The other variety used in this experiment for comparison, IR 72, showed higher values than both tyansgenic rice line and variety Nakdonbyeo on all three parameters; leaf photosynthetic rate of 20.61 $\mu$mol CO$_2$ $m^{-2}s^{-1}$, leaf transpiration rate of 12.88 mmol $H_2O$ $m^{-2}s^{-1}$, and leaf water potential of -0.82 MPa. So this transgenic rice line did not show superior performance in leaf transpiration rate, leaf photosynthetic rate and leaf water potential compared to variety Nakdongbyeo. This result along with visual observation on leaf rolling and drying during the experimental period indicated poor physiological performance of this transgenic rice line. Further studies on metabolic status of stress-induced trehalose, along with study on physiological response of this transgenic rice line during drought stress would shed more light on overall physiological performance of this transgenic rice line.

Comparative study on the properties of polypeptides induced by NaCl, drought and temperature treatments in rice seedlings (NaCl, 한발 및 온도 처리에 따른 유묘기 수도의 폴리펩티드 속성의 비교분석)

  • Lim, Gum-Chun;Jung, Yeoung-Sang;Shin, Jeong-Sheop
    • Applied Biological Chemistry
    • /
    • v.35 no.6
    • /
    • pp.485-489
    • /
    • 1992
  • Plants are altered not only in the outward appearance but also in their physiological and biochemical properties with reaction to the environmental stresses; particularly, the biosynthetic system of protein in situ rapidly responds to this. In order to investigate the change of properties of polypeptides in rice plants induced by several stresses, the seedlings were subjected to exposure to NaCl, drought, and low and high temperatures, respectively, and then some aspects of polypeptide variations were compared. Without exception, the rice plant, which is somewhat tolerant to environmental change, shows the alteration in several polypeptides. Moreover, newly synthesized polypeptides were observed in response to stresses. The existing proteins for the primary metabolic pathways were markedly decreased as each treatment progressed.

  • PDF

Effect of Mycorrhiza on Plant Growth and Drought Resistance in Ardisia pusilla (Mycorrhiza 처리가 Ardisia pusilla의 생육 및 내건성에 미치는 영향)

  • Baek, Yi-Hwa;Baikt, Jung-Ae;Lee, Yun-Jeong;Nam, Yu-Kyeong;Sohn, Bo-Kyoon;Lee, Jae-Sun;Chiang, Mae-Hee
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.132-136
    • /
    • 2009
  • To investigate the effect of mycorrhiza on drought resistance and plant growth, Ardisia pusilla were colonized with arbuscular mycorrhiza (AM), Glomus spp. Host plants were cultured in a growth chamber for 30 days after colonization with AM. Water stress treatment was carried out by repeating five days off-watering and re-watering for 60 days. The growth of A. pusilla was enhanced by AM colonization compared to that of control, while the proline contents was significantly reduced in AM colonized plants compared to that of non-mycorrhizal plants. The inorganic nutrient contents i.e. Fe, Mn, Zn, and Cu in arbuscular mycorrhizal plants were higher than those of control.

Characterization of Arabidopsis RopGEF family genes in response to abiotic stresses

  • Shin, Dong Ho;Kim, Tae-Lim;Kwon, Yong-Kook;Cho, Man-Ho;Yoo, Jihye;Jeon, Jong-Seong;Hahn, Tae-Ryong;Bhoo, Seong Hee
    • Plant Biotechnology Reports
    • /
    • v.3 no.3
    • /
    • pp.183-190
    • /
    • 2009
  • Rho-related GTPase of plants (ROP) plays an important role in plant growth and development as a signaling protein. Plant RopGEFs are recently identified ROP activator proteins in Arabidopsis. In this study, we cloned 14 RopGEFs in Arabidopsis and characterized their expression patterns in response to abiotic stresses. Fourteen RopGEF genes were categorized into three groups based on their amino acid homologies and molecular sizes. Most RopGEFs were expressed predominantly in flower but some RopGEFs displayed a tissue-specific expression pattern. RopGEF1, 4, 5, and 11 were expressed in all tissues including root and leaves whereas RopGEF7, 8, 9, and 13 were expressed only in flowers. The transcript levels of 14 RopGEFs were changed significantly depending upon abiotic stresses such as cold, heat, drought and salts. RopGEF5 transcription was up-regulated by salt and drought treatment but down-regulated by heat. RopGEF14 transcript level was also increased by salt but decreased by heat stress. The transcript levels of RopGEF1, 7, 9, and 12 were enhanced in response to heat stress but showed no changes in response to cold stresses. Drought stress activated Group 3 RopGEFs such as RopGEF5 and 7. Taken together, 14 RopGEFs are responding to the abiotic stresses individually or as a group.