Effect of Mycorrhiza on Plant Growth and Drought Resistance in Ardisia pusilla

Mycorrhiza 처리가 Ardisia pusilla의 생육 및 내건성에 미치는 영향

  • Baek, Yi-Hwa (Dept. of Horticultural Science, Seoul Women's University) ;
  • Baikt, Jung-Ae (Dept. of Horticultural Science, Seoul Women's University) ;
  • Lee, Yun-Jeong (National Academy of Agricultural Science) ;
  • Nam, Yu-Kyeong (Dept. of Horticultural Science, Seoul Women's University) ;
  • Sohn, Bo-Kyoon (Dept. of Agricultural Chemistry, Sunchon Nat'l Univ) ;
  • Lee, Jae-Sun (Hanil Landscape Architecture Design Co. Ltd) ;
  • Chiang, Mae-Hee (Dept. of Horticultural Science, Seoul Women's University)
  • Published : 2009.06.30

Abstract

To investigate the effect of mycorrhiza on drought resistance and plant growth, Ardisia pusilla were colonized with arbuscular mycorrhiza (AM), Glomus spp. Host plants were cultured in a growth chamber for 30 days after colonization with AM. Water stress treatment was carried out by repeating five days off-watering and re-watering for 60 days. The growth of A. pusilla was enhanced by AM colonization compared to that of control, while the proline contents was significantly reduced in AM colonized plants compared to that of non-mycorrhizal plants. The inorganic nutrient contents i.e. Fe, Mn, Zn, and Cu in arbuscular mycorrhizal plants were higher than those of control.

균근을 이용한 Ardisia pusilla의 내건성 증진효과를 알아보기 위하여 내생균근 Glomus spp.을 접종하여 생육상에서 30일 동안 재배한 후 수분스트레스처리를 실시하였다. 수분스트레스처리는 5일간 무관수 상태로 두었다가 관수하는 방법으로 60일 동안 반복 처리하였다. 식물생육은 균근처리시 대조구에 비해 증가하였으며, 관수시 스분스트레스의 회복력도 빨랐다. 식물체내 양분함량은 지하부의 Fe, Mn, 및 Cu의 함량의 경우 균근 접종 식물이 대조구에 비해 현저하 높았으나 이에 반하여 프롤린 함량은 대조구에서 균근 접종식불에 비해 높게 나타났다.

Keywords

References

  1. Abbott, L.K. and A.D. Robson. 1991. Facters influenced the occurrence of vesicular-arbuscular mycorrhizas. Agriculture. Ecosystems and Environment. 35:121-150 https://doi.org/10.1016/0167-8809(91)90048-3
  2. Barea, J.M. and C. Aczon-Aguilar. 1982. Production of plant growth-regulating substances by the vesicular arbuscular mycorrhizal fungus Glomus mosseae. Appl. Environ. Microbiol. 43:810-813
  3. Cox, G and P.B. Tinker. 1976. Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. I. The arbuscle and phosphorus transfer: a quantative ultrastructyral study. New Phytol. 77:371-378 https://doi.org/10.1111/j.1469-8137.1976.tb01526.x
  4. Dehne, H. W. 1982. Intraction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathol. 72:1115-1119
  5. Elmas, R.P. and B. Mosse. 1984. Vesicular-arbuscular endomycorrhizal inoculum production. Experiments with maize (Zea mays) and other hosts in nutrition flow culture. Can. J. Bot. 62: 1531-1536 https://doi.org/10.1139/b84-203
  6. George, E., K. Hussler, D. Vetterlein, E. Gorgus, and H. Marschner. 1992. Water and nutrients translocation by hyphae of Glomus mosseae. Can. J. Bot. 70:2130-2137 https://doi.org/10.1139/b92-265
  7. Gerdmann, J.W. 1964. The effect of mycorrhizas on the growth of Maize. Mycologia. 56:342-349 https://doi.org/10.2307/3756675
  8. Gildon, A. and P.B. Tinker. 1983. Interactio.ns of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. New Phytol. 95:247-261 https://doi.org/10.1111/j.1469-8137.1983.tb03491.x
  9. Giovannetti, M. and B. Mosse. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol. 84:489-500 https://doi.org/10.1111/j.1469-8137.1980.tb04556.x
  10. Hopkin, W.G. 2001. Plant Physiology. Eulyoo Publishing Company, Ltd., Seoul, Korea
  11. Huang, R.S, W.K. Smith, and R.J. Yost. 1985. Influence of vesicular arbuscular mycorrhizae on growth, water relations, and leaf orientation in Leucena leucocephala (Lam) De Wit. New Phytol. 99:229-243 https://doi.org/10.1111/j.1469-8137.1985.tb03652.x
  12. Jenson, A. 1982. Influence of four vesicular arbuscular mycorrhizal fungi on nutrient uptake and growth in Barley (Hordeum vulgro). New Phytol. 90:45-50 https://doi.org/10.1111/j.1469-8137.1982.tb03239.x
  13. Kim, C.K. and C.J. Lee. 1984. Vesicular arbuscular mycorrhizae in some plants (II). Report of Sci. Education (Kong Ju College of Education) 16:255-260
  14. Koske, R.E. and J.N. Gemma. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 92:486-505 https://doi.org/10.1016/S0953-7562(89)80195-9
  15. Lambert, D.H., D.F. Baker, and H. Cole. 1979. The role of mycorrhizae in the interactions of phosphorus with Zinc, Copper and other elements. Soil Sci. Soc. Am. J. 43:976-980 https://doi.org/10.2136/sssaj1979.03615995004300050033x
  16. Lee, S.S. and C.N. Ryu. 1992. Symbiosis of arbuscular mycorrhizae on the plant roots. Kor. Mycol. 20:126-133
  17. Lindermann, R.D. 1988. Mycorrhizal interaction with the Rhizosphere Microflora: Mycorrhizo-sphere effect. Am. Phytopathological Soc. 78:366-371
  18. Morton, J.B. and G.L. Benny. 1990. Revised classification of Arbuscrlar mycorrgizal fungi (Zygomycetes) A new oder, Glomales, two new families. Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon: 471-491
  19. Mosse, B. 1957. Fruitifications associated with mycorrhigal strawberry roots, Nature. Lond. 171:974
  20. Mosse, B. and D.J. Hayman, 1971. Plant growth responses to vesicular arbuscular mycorrhiza. II. In unsterilised field soils. New Phytol. 70:29-34 https://doi.org/10.1111/j.1469-8137.1971.tb02505.x
  21. Nam, Y.K., J.A. Baik, and M.H. Chiang. 2007. Effects of different NaCI concentration on the growth of Suaeda asparagoides, Suaeda maritima, and Salicornia herbacea. Korean J. Soil Sci. Fert. 40(5):349-353
  22. Ruiz-Lozana, J.M. and R. Azcon. 1995. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiologia Plantarum. 95:472-478 https://doi.org/10.1111/j.1399-3054.1995.tb00865.x
  23. Safir, GR., J.S. Boyer, and J.W. Gerdemann. 1971. Mycorrhizal enhancement of water transport in soybean. Science. 172:581-583 https://doi.org/10.1126/science.172.3983.581
  24. Safir, G.R., J.S. Boyer, and J.W. Gerdemann. 1972. Nutrient status and mycorrhizal enhancement of water transport in soybean. Plant Physiol. 49:700-703 https://doi.org/10.1104/pp.49.5.700
  25. Sanchez-Diaz, M. and M. Honrubia. 1994. Water relations and alleviation of drought stress in mycorrhizal plants. pp.167-178 In: S. Gianinazzi and H. Schupp (Eds.), Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Birkhaeuser Verlag, Basel, Germany
  26. Sanders, F.E. and P.B. Tinker. 1971. Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature. Lond. 33:278-279
  27. Schenck, N.C. 1981. Relstionship of mycorrhizal fungi to other microorganisms in the root and rhizosphere. New Jersey, Agri. Exp. St. Res. Rep. No. R 04400-01-81. P. 37
  28. Scher, F.M. and R. Baker. 1982. Effect of Pseudomonas putida and a symthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogenes. Phytopathol. 72:1567-1573 https://doi.org/10.1094/Phyto-72-1567
  29. Snellgrove, R.C., W.E. Splittstoesser, D.P. Stribley, and P.B. Tinker. 1982. The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular arbuscular mycorrhizas. New Phytol. 92:75-87 https://doi.org/10.1111/j.1469-8137.1982.tb03364.x
  30. Swaminathan, K. and B. C. Verma. 1979. Responses of three crop species to vesicular-arbuscular mycorrhizal infection on zinc deficient indian soils. New Phytol. 82:481-487 https://doi.org/10.1111/j.1469-8137.1979.tb02675.x
  31. Trappe, J .M. 1981. Mycorrhizae and productivity of arid and semiarid range lands, In Advances in food productry system for arid and semiarid lands. Academic Press, Inc. 581-599