Browse > Article
http://dx.doi.org/10.7740/kjcs.2020.65.2.113

Mitigation Effects of Foliar-Applied Hydrogen Peroxide on Drought Stress in Sorghum bicolor  

Shim, Doo-Do (Institute of Hadong Green Tea)
Lee, Seung-Ha (Department of Agronomy, Gyeongsang National University)
Chung, Jong-Il (Department of Agronomy, Gyeongsang National University)
Kim, Min Chul (Department of Agronomy, Gyeongsang National University)
Chung, Jung-Sung (Department of Agronomy, Gyeongsang National University)
Lee, Yeong-Hun (Department of Agronomy, Gyeongsang National University)
Jeon, Seung-Ho (Department, Sunchon National University)
Song, Gi-Eun (Department of Applied Biological Science, Applied Biology (BK Plus), Gyeongsang National University)
Shim, Sang-In (Department of Agronomy, Gyeongsang National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.65, no.2, 2020 , pp. 113-123 More about this Journal
Abstract
Global climatic change and increasing climatic instability threaten crop productivity. Due to climatic change, drought stress is occurring more frequently in crop fields. In this study, we investigated the effect of treatment with hydrogen peroxide (H2O2) before leaf development on the growth and yield of sorghum for minimizing the damage of crops to drought. To assess the effect of H2O2 on the growth of sorghum plant, 10 mM H2O2 was used to treat sorghum leaves at the 3-leaf stage during growth in field conditions. Plant height, stem diameter, leaf length, and leaf width were increased by 7.6%, 9.6%, 8.3% and 11.5%, respectively. SPAD value, chlorophyll fluorescence (Fv/Fm), photosynthetic rate, stomatal conductance, and transpiration rate were increased by 3.0%, 4.9%, 26.0%, 23.4% and 12.7%, respectively. The amount of H2O2 in the leaf tissue of sorghum plant treated with 10 mM H2O2 was 0.7% of the applied amount after 1 hour. The level increased to approximately 1.0% after 6 hours. The highest antioxidant activity measured by the Oxygen Radical Absorbance Capacity assay was 847.3 µmol·g-1 at 6 hour after treatment. However, in the well-watered condition, the concentration of H2O2 in the plant treated by the foliar application of H2O2 was 227.8 µmol·g-1 higher than that of the untreated control. H2O2 treatment improved all the yield components and yield-related factors. Panicle length, plant dry weight, panicle weight, seed weight per plant, seed weight per unit area, and thousand seed weight were increased by 8.8%, 18.0%, 24.4%, 24.7%, 29.9% and 7.1%, respectively. Proteomic analysis showed that H2O2 treatment in sorghum increased the tolerance to drought stress and maintained growth and yield by ameliorating oxidative stress.
Keywords
drought stress; $H_2O_2$; oxidative stress; proteomics; sorghum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abass, S. M. and H. I. Mohamed. 2011. Alleviation of adverse effects of drought stress on common bean (Phaseolus vulgaris L.) by exogenous application of hydrogen peroxide. Bangladesh J. Bot. 41 : 75-83.
2 Abdel-Motagally, F. M. F., and M. El-Zohri. 2016. Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages. J. Saudi Soc. Agri. Sci. In press.
3 Agashe, V. R. and F. U. Hartl. 2000. Roles of molecular chaperones in cytoplasmic protein folding. Semin. Cell Dev. Biol. 11 : 15-25.   DOI
4 Ali, G. M. and M. Setsuko. 2006. Proteomic analysis of rice leaf sheath during drought stress. J. Proteome Res. 5 : 396-403.   DOI
5 Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55 : 373-399.   DOI
6 Azevedo Neto, A. D., J. T. Prisco, J. Eneas-Filho, J. V. Medeiros, and E. Gomes-Filho. 2005. Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J. Plant Physiol. 162 : 1114-1122.   DOI
7 Beck, C., J. Grieser, M. Kottek, F. Rubel, and B. Rudolf. 2006. Characterizing global climate change by means of Koppen climate classification. Deutscher Wetterdienst. 3 : 413-423.
8 Boyer, J. S. 1970. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol. 46 : 233-235.   DOI
9 Beroud, C. and T. Soussi. 1997. p53 and APC gene mutations: software and databases. Nucleic Acids Res. 25 : 138.   DOI
10 Birchmeier, W. and J. Behrens. 1994. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochem. Bioph. Res. Co. 1198 : 11-26.
11 Bradford, M. M. 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 : 248-254.   DOI
12 Byun, H. J. and S. J. Choi. 2003. Suppression of post-harvest grey mold rot incidence in strawberry by field application of hydrogen peroxide. J. Kor. Soc. Hort. Sci. 44 : 859-862.
13 Chang, H. G. and Y. S. Park. 2005. Effects of waxy and normal sorghum flours on sponge cake properties. Food Eng. Prog. 9:199-207.
14 Chaves, M. M., J. Flexas, and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 103 : 551-560.   DOI
15 Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant. Biol. 50 : 601-639.   DOI
16 Costa, F. M. G., A. T. Pham Thi, C. Pimentel, R. O. Pereyra Rossiello, Y. Zuily-Fodil, and D. Laffray. 2000. Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environ. Exp. Bot. 43 : 227-237.   DOI
17 Fraedrich, K., F. W. Gerstengarbe, and P. C. Werner. 2001, Climate shifts in the last century. Climatic Change. 50 : 405-417.   DOI
18 Cramer, G. R., S. C. Van Sluyter, D. W. Hopper, D. Pascovici, T. Keighley, and P. A. Haynes. 2013. Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC Plant Biol. 13-49.
19 Djanaguiraman, M., J. A. Sheeba, A. K. Shanker, D. D. Devi, and U. Bangarusamy. 2006. Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant Soil. 284 : 363-373.   DOI
20 Fischer, K. S., G. O. Edmeades, and E. C. Johnson. 1989. Improvement of maize yield under moisture-deficits. Field Crops Res. 22 : 227-243.   DOI
21 Hattori, T., S. Inanaga, H. Araki, P. An, S. Morita, M. Luxova, and A. Lux. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plantarum. 123 : 459-466.   DOI
22 Hsiao, T. C. 1973. Plant response to water stress. Plant Physiol. 24 : 519-570.   DOI
23 Hu, X., X. Wu, C. Li, M. Lu, T. Liu, Y. Wang, and W. Wang. 2012. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light. PLOS One. 7 : e49500.   DOI
24 Kim, H. J., B. Wang, Q. Ding, and I. U. Chung. 2008, Changes in arid climate over North China detected by the Koppen climate classification. J. Meteorol. Soc. Jap. 86 : 981-990.   DOI
25 Kim, S. G., J. S. Lee, J. T. Kim, Y. S. Kwon, D. W. Bae, H. H. Bae, B. Y. Son, S. B. Baek, Y. U. Kwon, M. O. Woo, and S. H. Shin. 2015. Physiological and proteomic analysis of the response to drought stress in an inbred Korean maize line. ProQuest. 8 : 159-168.
26 Lu, H. and V. J. Higgins. 1999. The effect of hydrogen peroxide on the viability of tomato cells and of the fungal pathogen Cladosporium fulvum. Physiol. Mol. Plant Pathology. 54 : 131-143.   DOI
27 Lee, M. S. 2004. Bioactive properties in whole grains. J. Korean Soc. Food Sci. Nutr. 9 : 19-25.
28 Li, L., J. Staden, and A. K. Jager. 1998. Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regul. 25 : 81-87.   DOI
29 Liu, z., B. Zhao, Y. Shi, C. Guo, H. Yang, and Z. Li. 2010. Novel nonenzymatic hydrogen peroxide sensor based on iron oxidesilver hybrid submicrospheres. Talanta. 81 : 1650-1654.   DOI
30 Ou, J. B., H. W. Maureenl, and L. Ronald. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Agric. Food Chem. 49 : 4619-4626.   DOI
31 Park, W. S., R. R. Oh, J. Y. Park, S. H. Lee, M. S. Shin, Y. S. Kim, S. Y. Kim, H. K. Lee, P. J. Kim, S. T. Oh, N. J. Yoo, and J. Y. Lee. 1999. Frequent somatic mutations of the beta-catenin gene in intestinal-type gastric cancer. Cancer Res. 59 : 4257-4260.
32 Roovers, R. C., E. van der Linden, H. Zijlema, A. de Bruine, J. W. Arends, and H. R. Hoogenboom. 2001. Evidence for a bias toward intracellular antigens in the local humoral anti-tumor immune response of a colorectal cancer patient revealed by phage display. Int. J. Cancer. 93 : 832-840.   DOI
33 Saglam, A., A. Kadioglu, M. Demiralay, and R. Terzi. 2014. Leaf rolling reduces photosynthetic loss in maize under severe drought. Acta Bot. Croat. 73 : 315-332.   DOI
34 Xu, Y., P. Burgess, and B. Huang. 2015. Root antioxidant mechanisms in relation to root thermotolerance in perennial grass species contrasting in heat tolerance. PLOS One. 1-19.
35 Seki, M., T. Umeawa, K. Urano, and K. Shinozaki. 2007. Regulatory metabolic networks in drought stress responses. Plant Biol. 10 : 296-302.
36 Souza, R. P., E. C Machado, J. A. B. Silva, A. M. M. A. Lagoa, and J. A. G. Silveira. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. Exp. Bot. 51 : 45-56.   DOI
37 Tuinstra, M. R., E. M. Grote, P. B. Goldsbrough, and G. Ejeta. 1997. Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breeding. 3 : 439-448.   DOI
38 Wang, W., F. Tai, and S. Chen. 2008. Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J. Sep. Sci. 31 : 2032-2039.   DOI
39 Woo, Y. H., H. J. Kim, Y. C. Huh, T. Y. Kim, K. D. Kim, I. H. Cho, K. D. Ko, K. H. Lee, and K. H. Hong. 2005. Effect of high temperature adaptable improvement on cucumber (Cucumis sativus) of greenhouse according to hydrogen peroxide treatment at summer. J. VIB Control. 14 : 95-99.
40 Yokozaki, H., W. Yasui, and E. Tahara. 2001. Genetic and epigenetic changes in stomach cancer. Int. Rev. Cytol. 204 : 49-95.   DOI
41 Yordanov, I., V. Velikova, and T. Tsonev. 2000. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica. 38 : 171-186.   DOI
42 Yushi, I., Y. Haruka, Y. Takashi, I. I. Mari, A. Susumu, and S. H. Zheng. 2011. Hydrogen peroxide spraying alleviates drought stress in soybean plants. J. Plant Physiol. 168 : 1562-1567.   DOI
43 Gregorio, B. E., A. H. Jose, and D. V. Pedro. 2012. Role of $H_2O_2$ in pea seed germination. Plant Signal. Behav. 7 : 193-195.   DOI
44 Brestic, M., G. Cornic, M. J. Fryer, and N. R. Baker. 1995. Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress. Planta. 196 : 450-457.