• Title/Summary/Keyword: Droplet area ratio

Search Result 25, Processing Time 0.031 seconds

NUMERICAL STUDY ON THE OPTIMAL DESIGN OF SPRAY SYSTEM IN PACKED BED SCRUBBER (충진층식 스크러버의 스프레이 시스템 최적 설계에 대한 수치해석적 연구)

  • Ko, S.W.;Ro, K.C.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.28-34
    • /
    • 2007
  • This study evaluates the performance of the packed bed scrubber and proposes the optimization of spray system for improvements of collection efficiency. The packed bed scrubber is used primarily in the semiconductor manufacturing process. The mean diameter of entering solid particles in scrubber is the submicron. The impaction between water droplets and solid particles is an important factor in removing the solid particles. Thus, the coverage area of spray system influences on the collection efficiency. The collection efficiency of a single droplet is calculated through the mathematical model and numerical calculations are performed for coverage area for each nozzle type (Droplet diameters: 500, 319.5, $289.5{\mu}m$) and injected directions (0, 15, $30^{\circ}$). In case of nozzle type 3, the collection efficiency of a single droplet is highest but the collection efficiency of spray system has lowest value because the ratio of flow rate between the gas and water is below 0.1. The results show the coverage area ratio is about 85% in the case of nozzle type 3 and downward sirection $15^{\circ}$. It was shown that a coverage area increase by two times than an existing spray system. In simulation of demister, collection efficiency by demister is predicted about 80% and the pressure drop in demister is below 3.5 Pa.

A Study for Improving Spray Uniformity of the SECFR System for Vehicle Applications (SECFR 시스템의 차량적용을 위한 분무균일도향상에 관한 연구)

  • Shon, J.W.;Woo, S.C.;Kim, S.G.;Lee, K.H.
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.95-100
    • /
    • 2015
  • Lower recirculated gas temperature at EGR system reduces NOx and PM emissions. However, EGR Cooler can be polluted by PM generated from recirculated EGR gas, and it reduces cooling efficiency and the amount of EGR gas simultaneously. The SECFR(Steam EGR Cooler Fouling Remover) system which uses the evaporated washer fluid steam caused by high temperature of EGR gas was manufactured for removing fouling generated on the cooler surface. Since an injection pressure of wind shield washer fluid in the vehicle is approximately 0.5 bar, it is not enough to atomize the injected washer fluid. Thus, it is necessary to apply a method to atomize the washer fluid. In this study, the impinging plate was used to promote the atomization of spray washer fluid for the purpose of apply SECFR system to vehicles and measured the DAR(Droplet Area Ratio) and DUI(Droplet Uniformity Index) through the spray visualization.

A Study on the Characteristics of Soot Formation and Oxidation in Free Fuel Droplet Array

  • Lee, Myung-Jun;Kim, Jong-Youl;Yeom, Jeong-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.851-860
    • /
    • 2002
  • In this study, it was attempted to obtain the fundamental data for the formation and oxidation of soot from a diesel engine. Combustion of spray injected into a cylinder is complex phenomenon having physical and chemical processes, and these processes affect each other. There are many factors in the mechanism of the formation and oxidization of soot and it is necessary to observe spray combustion microscopically. In order to observe with that view, free fuel droplet array was used as an experimental object and the droplet array was injected into an atmospheric combustion chamber with high temperature. Ambient temperature of the combustion chamber, interdroplet spacing, and droplet diameter were selected as parameters, which affect the formation and oxidation of soot. In this study, it was found that the parameters also affect ignition delay of droplet. The ambient temperature especially affected the ignition delay of droplet as well as the flame temperature after self-ignition. As the interdroplet spacing that means the local equivalence ratio in a combustion chamber was narrow, formation of soot was increased. As diameter of droplet was large, surface area of the droplet was also broad, and hence evaporation of the droplet was more active than that of a droplet with relative small diameter.

Investigation of Liquid Droplet Impingement Erosion Corrosion based on the Flow Rate of Anodized 5083-H321 Al Alloy in Seawater (경질양극산화된 5083-H321 알루미늄 합금의 해수 내 액적충격침식부식 손상 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.310-317
    • /
    • 2020
  • This study investigated the damage to the specimen due to liquid droplet impingement erosion corrosion, which improved the corrosion resistance and durability via hard anodization of 5083-H321 aluminum alloy, which is widely used for small ships and marine structures. The experiment combined liquid droplet impingement erosion and electrochemical equipment with the flow rates in natural seawater solution. Subsequently, Tafel extrapolation of polarization curves was performed to evaluate damage due to the liquid droplet impingement erosion corrosion. The damaged surface was observed using a 3D microscope and a scanning electron microscope. The degree of pitting damage was measured using the Image J program, and the surface hardness was measured using the micro-Vickers hardness tester. The corrosion current density, area, depth, and ratio of the damaged areas increased with the increase in flow rate. The grain size of the damaged area at a flow rate of 20 m s-1 showed fewer and minor differences in height, and a smooth curved shape. The hardness of the damaged surface tended to decrease with increase in flow rate.

Experimental Study on Spray Characteristics of Twin Fluid Nozzle in Urea-SCR (Urea-SCR에 적용되는 이유체 노즐의 분무특성에 관한 실험적 연구)

  • Park, Hyung Sun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.96-102
    • /
    • 2017
  • In order to reduce the NOx, SCR technology is most suitable. In this study, we focused on studying the injector part of urea-SCR system. When stoichiometric 1 mole of urea is injected, 2 moles of $NH_3$ are created. $NH_3$ causes a SCR reaction by reacting with NOx. However, urea is decomposed by the side reaction of coming out HNCO, deposit formation is formed. In this study, it was to design a nozzle that can spray the optimal spray flow rate. Test nozzle used in this experiment is efferverscent type. The result of the experiment, liquid flow rate was confirmed to be that they are dominated by the exit orifice diameter. The area ratio is defined by ratio of the area of exit orifice hole and that of aerorator. The droplet size was measured by varying the area ratios. In addition, it was also confirmed that there is no change of the liquid flow rate and air flow rate to change the aerorator at the same exit orifice. Further, It was confirmed that the droplet size was relatively uniform even though the area ratio was different. Finally, there is little change in the SMD that air flow rate increases in 0.3 or more ALR.

Breakup Characteristics of Fuel Droplet Including Nanoparticles (나노 입자가 포함된 연료 액적의 분열 특성 연구)

  • Lee, Jae Bin;Shin, Dong Hwan;Lee, Min Jung;Kim, Namil;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.192-196
    • /
    • 2012
  • This paper reports on breakup characteristics of fuel droplet which includes metal nanoparticles. In order to develop a new injection system for nanoparticle-coated layers overcoming the conventional flame spray system, fundamental experiments were conducted to examine the interaction between a fuel droplet with nanoparticles and the external energy induced by the laser. In the experiments, this study used nickel nanoparticles whose size was under 100 nm to mix with kerosene as the fuel, and utilized a syringe pump and a metal needle to inject a fuel droplet. In particular, the Nd-YAG laser was adopted to give additional energy to the nanoparticles for evaporation of a fuel droplet containing nanoparticles. When the laser energy as 96 mJ was irradiated during the injection, it was observed that such an explosive evaporation occurred to break up a fuel droplet including nanoparticles, making the rapid increase in the ratio surface area to liquid volume. From this work, we suggest the possibility that the laser energy can be used for rapid evaporation of a fuel droplet.

A Study on the Behavior of Nano-fluid Droplet Impacting Upon a Hot Surface (고온벽과 충돌하는 나노유체 액적 거동에 관한 연구)

  • Kim, E.DD.;Park, I.H.;Bae, N.H.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, the behavior of water or nanofluid droplets impacting upon a hot surface was investigated by visualization of impacting phenomena with time-delayed photographic technique. Changing the mass ratio of nanofluid and the temperature of the heated surface, the characteristics of the spreading behavior and the diameter of spreading liquid film was compared between water and nanofluid droplets. The impacting droplet spreaded as a liquid film after impact and nanofluid droplets spreaded more widely than water droplets. After reaching the maximum diameter, water droplets shrinked more than nanofluid droplets. Based on this, the heat transfer area from a hot surface to impacting nanofluid droplets would be wider than that of impacting water droplets. Considering individual impacting droplet only, spray cooling using nanofluid would be better than using water.

Preparation of Nano-Sized Tin Oxide Powder from Tin Chloride Solution by Spray Pyrolysis Process

  • Yu, Jae-Keun;Kim, Dong-Hee
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.396-402
    • /
    • 2011
  • In this study, by using tin chloride solution as a raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the generated tin oxide powder depending on the inflow speed of the raw material solution are examined. When the inflow speed of the raw material solution is 2 ml/min, the majority of generated particles appear in the shape of independent polygons with average size above 80-100 nm, while droplet-shaped particles show an average size of approximately 30 nm. When the inflow speed is increased to 5 ml/min, the ratio of independent particles decreases, and the average particle size is approximately 80-100 nm. When the inflow speed is increased to 20 ml/min, the ratio of droplet-shaped particles increases, whereas the ratio of independent particles with average size of 80-100 nm decreases. When the inflow speed is increased to 100 ml/min, the average size of the generated particles is around 30-40 nm, and most of them maintain a droplet shape. With a rise of inflow speed from 2 ml/min to 5 ml/min, a slight increase of the XRD peak intensity and a minor decrease of specific surface area are observed. When the inflow speed is increased to 20 ml/min, the XRD peak intensity falls dramatically, although a significant rise of specific surface area is observed. When the inflow speed is increased to 100 ml/min, the XRD peak intensity further decreases, while the specific surface area increases.

A Study on the Development of Prediction System for Pipe Wall Thinning Caused by Liquid Droplet Impingement Erosion (액적충돌침식으로 인한 배관감육 예측체계 구축에 관한 연구)

  • Kim, Kyung-Hoon;Cho, Yun-Su;Hwang, Kyeong-Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.125-131
    • /
    • 2013
  • The most common pipe wall thinning degradation mechanisms that can occur in the steam and feedwater systems are FAC (Flow Acceleration Corrosion), cavitation, flashing, and LDIE (Liquid Droplet Impingement Erosion). Among those degradation mechanisms, FAC has been investigated by many laboratories and industries. Cavitation and flashing are also protected on the piping design phase. LDIE has mainly investigated in aviation industry and turbine blade manufactures. On the other hand, LDIE has been little studied in NPP (Nuclear Power Plant) industry. This paper presents the development of prediction system for pipe wall thinning caused by LDIE in terms of erosion rate based on air-water ratio and material. Experiment is conducted in 3 cases of air-water ratio 0.79, 1.00, and 1.72 using the three types of the materials of A106B, SS400, and A6061. The main control parameter is the air-water ratio which is defined as the volumetric ratio of water to air (0.79, 1.00, 1.72). The experiments were performed for 15 days, and the surface morphology and hardness of the materials were examined for every 5 days. Since the spraying velocity (v) of liquid droplets and their contact area ($A_c$) on specimens are changed according to the air-water ratio, we analyzed the behavior of LDIE for the materials. Finally, the prediction equations(i.e. erosion rate) for LDIE of the materials were determined in the range of the air-water ratio from 0 to 2%.

Infleunce of Nozzle Tip Size on the Preparation of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process

  • Yu, Jaekeun;Kim, Donghee
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.81-88
    • /
    • 2013
  • In this study, using a tin chloride solution as the raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the tin oxide powder according to the nozzle tip size are examined. Along with an increase in the nozzle tip size from 1 mm to 5 mm, the generated particles that appear in the shape of droplets maintain an average particle size of 30 nm. When the nozzle tip size increases from 1 mm to 2 mm, the average size of the generated particles is around 80-100 nm, and the ratio of the independent particles with a compact surface structure increases significantly. When the nozzle tip size is at 3 mm, the majority of the generated particles maintain the droplet shape, the average size of the droplet-shaped particles increases remarkably compared to the cases of other nozzle tip sizes, and the particle size distribution also becomes extremely irregular. When the nozzle tip size is at 5 mm, the ratio of droplet-shaped particles decreases significantly and most of the generated particles are independent ones with incompact surface structures. Along with an increase in the nozzle tip size from 1 mm to 3 mm, the XRD peak intensity increases, whereas the specific surface area decreases greatly. When the nozzle tip size increases up to 5 mm, the XRD peak intensity decreases significantly, while the specific surface area increases remarkably.