Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.2.081

Infleunce of Nozzle Tip Size on the Preparation of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process  

Yu, Jaekeun (Department of Advanced Materials Engineering, Hoseo University)
Kim, Donghee (Department of Anesthesiology, Dankook University)
Publication Information
Korean Journal of Materials Research / v.23, no.2, 2013 , pp. 81-88 More about this Journal
Abstract
In this study, using a tin chloride solution as the raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the tin oxide powder according to the nozzle tip size are examined. Along with an increase in the nozzle tip size from 1 mm to 5 mm, the generated particles that appear in the shape of droplets maintain an average particle size of 30 nm. When the nozzle tip size increases from 1 mm to 2 mm, the average size of the generated particles is around 80-100 nm, and the ratio of the independent particles with a compact surface structure increases significantly. When the nozzle tip size is at 3 mm, the majority of the generated particles maintain the droplet shape, the average size of the droplet-shaped particles increases remarkably compared to the cases of other nozzle tip sizes, and the particle size distribution also becomes extremely irregular. When the nozzle tip size is at 5 mm, the ratio of droplet-shaped particles decreases significantly and most of the generated particles are independent ones with incompact surface structures. Along with an increase in the nozzle tip size from 1 mm to 3 mm, the XRD peak intensity increases, whereas the specific surface area decreases greatly. When the nozzle tip size increases up to 5 mm, the XRD peak intensity decreases significantly, while the specific surface area increases remarkably.
Keywords
tin chloride solution; spray pyrolysis; nano-sized tin oxide powder; average particle size; nozzle tip size;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Schiemann, S. Wirtz, V. Scherer and F. Barhold, Powder Technol., 228, 301 (2012).   DOI   ScienceOn
2 J. Yu and D. Kim, J. Nanosci. Nanotechnol., 12, 1545 (2012).   DOI   ScienceOn
3 J. H. Yi, J. H. Kim, H. Y. Koo, Y. N. Ko, Y. C. Kang and J. H. Lee, J. Power Sources, 196, 2858 (2011).   DOI   ScienceOn
4 J. K. Yu and D. H. Kim, J. Ceram. Soc. Jpn., 117, 1078 (2009).   DOI
5 J. Yu, S. Kang, K. C. Chung. J. S. Han and D. H. Kim, Mater. Trans., 48, 249 (2007).   DOI   ScienceOn
6 J. Yu, S. Kang, J. Kim, J. Kim, J. Han, J. Yoo, S. Lee and Z. Ahn, Mater. Trans., 47, 1838 (2006).   DOI   ScienceOn
7 J. Yu, G. Kim, T. Kim and J. Kim, Mater. Trans., 46, 1695 (2005).   DOI   ScienceOn
8 M. A. A. Elmasry, A. Gaber and E. M. H. Khater, Powder Technol., 90, 165 (1997).   DOI   ScienceOn
9 D. Majumdar, T. A. Shefelbine, T. T. Kodas and H. D. Glicksman, J. Mater. Res., 11, 2861 (1996).   DOI   ScienceOn
10 T. C. Pluym, T. T. Kodas, L. -M. Wang and H. D. Glicksman, J. Mater. Res., 10, 1661 (1995).   DOI   ScienceOn
11 T. C. Pluym, S. W. Lyons, Q. H. Powell, A. S. Gurav, T. T. Kodas, L. M. Wang and H. D. Glicksman, Mater. Res. Bull., 28, 369 (1993).   DOI   ScienceOn
12 A. Gurav, T. Kodas, T. Pluym and Y. Xiong, Aerosol Sci. Technol., 19, 411 (1993).   DOI   ScienceOn
13 G. L. Messing, S. C. Zhang and G. V. Jayanthi, J. Am. Ceram. Soc., 76, 2707 (1993).   DOI   ScienceOn
14 A. Antony, M. Nisha, R. Manoj and M. K. Jayaraj, Appl. Surf. Sci., 225, 294 (2004).   DOI   ScienceOn
15 L. R. Cruz, C. Legnani, I. G. Matoso, C. L. Ferreira and H. R. Moutinho, Mater. Res. Bull., 39, 993 (2004).   DOI   ScienceOn
16 Y. Hu, X. Diao, C. Wang, W. Hao and T. Wang, Vacuum, 75, 183 (2004).   DOI   ScienceOn
17 I. Barin, Thermochemical Data of Pure Substances, p. 1392-1404, VCH, Germany (1989).