DOI QR코드

DOI QR Code

Investigation of Liquid Droplet Impingement Erosion Corrosion based on the Flow Rate of Anodized 5083-H321 Al Alloy in Seawater

경질양극산화된 5083-H321 알루미늄 합금의 해수 내 액적충격침식부식 손상 연구

  • Shin, Dong-Ho (Division of marine engineering, Graduate school, Mokpo national maritime university) ;
  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
  • 신동호 (목포해양대학교 기관공학과 대학원) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2020.12.15
  • Accepted : 2020.12.21
  • Published : 2020.12.31

Abstract

This study investigated the damage to the specimen due to liquid droplet impingement erosion corrosion, which improved the corrosion resistance and durability via hard anodization of 5083-H321 aluminum alloy, which is widely used for small ships and marine structures. The experiment combined liquid droplet impingement erosion and electrochemical equipment with the flow rates in natural seawater solution. Subsequently, Tafel extrapolation of polarization curves was performed to evaluate damage due to the liquid droplet impingement erosion corrosion. The damaged surface was observed using a 3D microscope and a scanning electron microscope. The degree of pitting damage was measured using the Image J program, and the surface hardness was measured using the micro-Vickers hardness tester. The corrosion current density, area, depth, and ratio of the damaged areas increased with the increase in flow rate. The grain size of the damaged area at a flow rate of 20 m s-1 showed fewer and minor differences in height, and a smooth curved shape. The hardness of the damaged surface tended to decrease with increase in flow rate.

Keywords

References

  1. C. Vargel, Corrosion of Aluminum, Elsevier, pp. 88 - 109, Elsevier Science, San Diego (2004). http://www.cementechnology.ir/Library/Corrosion.of.Aluminium.pdf
  2. H. K. Hwang, D. H. Shin, K. H. Jung, and S. J. Kim, Corros. Sci. Tech., 19, 259 (2020). https://doi.org/10.14773/cst.2020.19.5.259
  3. D. H. Shin, H. K. Hwang, K. H. Jung, and S. J. Kim, J. Korean Inst. Surf. Eng., 53, 219 (2020). https://doi.org/10.5695/JKISE.2020.53.5.219
  4. Y. Zuo, P. H. Zhao, and J. M. Zhao, Surf. Coat. Tech., 166, 237 (2003). https://doi.org/10.1016/S0257-8972(02)00779-X
  5. M. G. Kim, C. J. Cho, J. S. Park, and W. S. Hwang, Corros. Sci. Tech., 29, 11 (2000). https://www.osti.gov/etdeweb/biblio/20176706
  6. I. J. Son, H. Nakano, S. Oue, and S. Kobayashi, Corros. Sci. Tech., 6, 275 (2007). https://www.j-cst.org/main/abstract_view.htm?scode=C&code=C00060600275&vol=6&no=6&type=aissue
  7. S. J. Lee, M. S. Han, and S. J. Kim, Kor. Soc. Mar. Eng., 39, 223 (2015). http://dx.doi.org/10.5916/jkosme.2015.39.3.223
  8. D. A. Jones, Principles and prevention of corrosion, pp. 77 - 85, Macmillan, New York (1992).
  9. H. H. Huang, and T. H. Chuang, Mater. Sci. Eng. A, 292, 90 (2000). https://doi.org/10.1016/S0921-5093(00)01021-2
  10. S. J. Lee, M. S. Han, S. K. Jang, and S. J. Kim, Corros. Sci. Tech., 14, 226 (2015). https://doi.org/10.14773/cst.2015.14.5.226
  11. Y. B. Kim and S. J. Kim, Corros. Sci. Tech., 19, 115 (2020). https://doi.org/10.14773/cst.2020.19.3.115
  12. A. George, Jr. Gehring, and M. H. Peterson, Corrosion, 37, 232 (1981). https://doi.org/10.5006/1.3577276
  13. S. Giddey, B. Cherry, F. Lawson, and M. Forsyth, Corros. Sci., 43, 1497 (2001). https://doi.org/10.1016/S0010-938X(00)00150-5
  14. F. Iain, Wear, 186-187, 1 (1995). https://doi.org/10.1016/0043-1648(95)07188-1
  15. N. Kamkar, F. Bridier, P. Bocher, and P. Jedrzejowski, Wear, 301, 442 (2013). https://doi.org/10.1016/j.wear.2013.01.005
  16. N. Fujisawa, S. Takano, K. Fujisawa, and T. Yamagata, Wear, 398-399, 158 (2018). https://doi.org/10.1016/j.wear.2017.12.003