Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.6.310

Investigation of Liquid Droplet Impingement Erosion Corrosion based on the Flow Rate of Anodized 5083-H321 Al Alloy in Seawater  

Shin, Dong-Ho (Division of marine engineering, Graduate school, Mokpo national maritime university)
Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
Publication Information
Corrosion Science and Technology / v.19, no.6, 2020 , pp. 310-317 More about this Journal
Abstract
This study investigated the damage to the specimen due to liquid droplet impingement erosion corrosion, which improved the corrosion resistance and durability via hard anodization of 5083-H321 aluminum alloy, which is widely used for small ships and marine structures. The experiment combined liquid droplet impingement erosion and electrochemical equipment with the flow rates in natural seawater solution. Subsequently, Tafel extrapolation of polarization curves was performed to evaluate damage due to the liquid droplet impingement erosion corrosion. The damaged surface was observed using a 3D microscope and a scanning electron microscope. The degree of pitting damage was measured using the Image J program, and the surface hardness was measured using the micro-Vickers hardness tester. The corrosion current density, area, depth, and ratio of the damaged areas increased with the increase in flow rate. The grain size of the damaged area at a flow rate of 20 m s-1 showed fewer and minor differences in height, and a smooth curved shape. The hardness of the damaged surface tended to decrease with increase in flow rate.
Keywords
Sea water; 5083-H321 Al alloy; Marine structures; Flow rate; Liquid droplet impingement erosion corrosion;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 C. Vargel, Corrosion of Aluminum, Elsevier, pp. 88 - 109, Elsevier Science, San Diego (2004). http://www.cementechnology.ir/Library/Corrosion.of.Aluminium.pdf
2 H. K. Hwang, D. H. Shin, K. H. Jung, and S. J. Kim, Corros. Sci. Tech., 19, 259 (2020). https://doi.org/10.14773/cst.2020.19.5.259   DOI
3 D. H. Shin, H. K. Hwang, K. H. Jung, and S. J. Kim, J. Korean Inst. Surf. Eng., 53, 219 (2020). https://doi.org/10.5695/JKISE.2020.53.5.219   DOI
4 M. G. Kim, C. J. Cho, J. S. Park, and W. S. Hwang, Corros. Sci. Tech., 29, 11 (2000). https://www.osti.gov/etdeweb/biblio/20176706
5 I. J. Son, H. Nakano, S. Oue, and S. Kobayashi, Corros. Sci. Tech., 6, 275 (2007). https://www.j-cst.org/main/abstract_view.htm?scode=C&code=C00060600275&vol=6&no=6&type=aissue
6 S. J. Lee, M. S. Han, and S. J. Kim, Kor. Soc. Mar. Eng., 39, 223 (2015). http://dx.doi.org/10.5916/jkosme.2015.39.3.223   DOI
7 D. A. Jones, Principles and prevention of corrosion, pp. 77 - 85, Macmillan, New York (1992).
8 H. H. Huang, and T. H. Chuang, Mater. Sci. Eng. A, 292, 90 (2000). https://doi.org/10.1016/S0921-5093(00)01021-2   DOI
9 S. J. Lee, M. S. Han, S. K. Jang, and S. J. Kim, Corros. Sci. Tech., 14, 226 (2015). https://doi.org/10.14773/cst.2015.14.5.226   DOI
10 Y. B. Kim and S. J. Kim, Corros. Sci. Tech., 19, 115 (2020). https://doi.org/10.14773/cst.2020.19.3.115   DOI
11 A. George, Jr. Gehring, and M. H. Peterson, Corrosion, 37, 232 (1981). https://doi.org/10.5006/1.3577276   DOI
12 Y. Zuo, P. H. Zhao, and J. M. Zhao, Surf. Coat. Tech., 166, 237 (2003). https://doi.org/10.1016/S0257-8972(02)00779-X   DOI
13 S. Giddey, B. Cherry, F. Lawson, and M. Forsyth, Corros. Sci., 43, 1497 (2001). https://doi.org/10.1016/S0010-938X(00)00150-5   DOI
14 F. Iain, Wear, 186-187, 1 (1995). https://doi.org/10.1016/0043-1648(95)07188-1   DOI
15 N. Kamkar, F. Bridier, P. Bocher, and P. Jedrzejowski, Wear, 301, 442 (2013). https://doi.org/10.1016/j.wear.2013.01.005   DOI
16 N. Fujisawa, S. Takano, K. Fujisawa, and T. Yamagata, Wear, 398-399, 158 (2018). https://doi.org/10.1016/j.wear.2017.12.003   DOI