• 제목/요약/키워드: Drop Ejection

검색결과 23건 처리시간 0.025초

고속카메라를 이용한 Drop-on-demand 방식의 정전 액적 토출 분석 (Analysis of Electrostatic Ejection of Liquid Droplets in Manner of Drop-on-demand Using High-speed Camera)

  • 김용재;최재용;손상욱;김영민;이석한;변도영;고한서
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.128-133
    • /
    • 2007
  • An electrostatic inkjet head can be used for manufacturing processes of large display systems and printed circuit boards (PCB) as well as inkjet printers because an electrostatic field provides an external force which can be manipulated to control sizes of droplets. The existing printing methods such as thermal bubble and piezo inkjet heads have shown difficulties to control the ejection of the droplets for printing applications. Thus, the new inkjet head has been proposed using the electrostatic force. A numerical analysis has been performed to calculate the intensity of the electrostatic field using the Maxwell's equation. Also, experiments have been carried out to investigate the droplet movement using a downward capillary with outside diameter of $500{\mu}m$. Gravity, surface tension, and electrostatic force have been analyzed with high voltages for a drop-on-demand ejection. It has been observed that the droplet size decreases and the frequency of the droplet formation and the velocity of the droplet ejection increase with increasing the intensity of the electrostatic field using high-speed camera.

  • PDF

미세 수관 노즐의 전기유체역학적 수적 분사특성 (Electrohydrodynamic Water Droplet Ejection Characteristics from a Micro-Water-Nozzle)

  • 문재덕
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1632-1637
    • /
    • 2010
  • A micro-water-nozzle, as one of a cooling means of micro-electronic devices, has been proposed and investigated. The I-V characteristics of the micro-water-nozzle and effect of applied voltage on the meniscus formation and deformation and ejection processes of de-ionized water on the micro-water-nozzle tip have been investigated. The water ejection processes, such as a drop formation, a drop deformation, a dripping, a cone jet, and an atomization, were taken place on the micro-water-nozzle tip by the electrohydrodynamic forces acted by the DC and AC high voltages applied on the meniscus of the micro-water-nozzle tip. The I-V characteristics of the micro-water-nozzle-to-plate electrode system were different from that of the same metal-point electrode system, due to the meniscus formation and water droplet ejection at the nozzle tip. The positive and negative DC and AC high voltages showed the water droplets ejection, the ejection rates of 1.8, 1.5 and 1.2 g/h respectively, which, however, showed that the proposed micro-water-nozzle-to-plate electrode system could be used as one of an effective pumping means.

항공기 장착 무장의 투하 안정성 검증을 위한 지상무장분리시험 (Ground Ejection Tests to verify the Safe Separation of an Aircraft Mounted Store)

  • 이종홍;최석민;이민형;이철;정재원
    • 한국항행학회논문지
    • /
    • 제22권2호
    • /
    • pp.70-75
    • /
    • 2018
  • 항공기에 장착하는 무장은 실제 항공기에 장착하기 전에 안전 분리가 이루어졌음을 검증하기 위해 지상에서 무장분리시험을 실시해야 한다. 본 연구에서는 더미유도탄으로 지상에서투하 안정성을 검증하기 위한 지상무장분리시험을 실시하였다. 지상무장분리시험의 필수장비인 무장분리장치는 공압으로 동작하며 압력이 크고, 오리피스 직경이 클수록 유도탄을 밀어내는 사출력이 크게 발생한다. 무장분리장치의 봄베 압력과 오리피스 직경을 변경하여 더미유도탄의 투하 움직임을 고속카메라로 계측하였고 투하변위, 투하속도를 분석하였다. 실제 비행하는 항공기에서 무장 투하 해석시 기초 데이터를 제공할 수 있고, 추후 개발되는 항공기 무장의 지상무장분리시험 수행시 유용할 것으로 생각한다.

EHD 원리를 이용한 정전기장 유도 잉크젯 프린터 헤드의 마이크로 Drop-on-Demand 제팅 성능 연구

  • 최재용;김용재;손상욱;안기철;이석한;고한서;;변도영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1947-1950
    • /
    • 2008
  • Printing technology is a very useful method in the several process of industrial fabrication due to noncontact and fast pattern generation. To make micro pattern, we investigate the electrostatic induced inkjet printer head for micro droplet generation and drop-on-demand jetting. In order to achieve the drop-on-demand micro droplet ejection by the electrostatic induced inkjet printer head, the pulsed DC voltage is supplied. In order to find optimal pulse conditions, we tested jetting performance for various bias and pulse voltages for drop-on-demand ejection. In this result, we have successful drop-on-demand operation and micro patterning. Therefore, our novel electrostatic induced inkjet head printing system will be applied industrial area comparing conventional printing technology.

  • PDF

액적의 분사 거동을 지배하는 무차원수에 대한 수치해석적 연구 (NUMERICAL STUDY OF THE EFFECTS OF THE GOVERNING NON-DIMENSIONAL PARAMETERS ON THE DROPLET EJECTION BEHAVIOR)

  • 김은정;백제현
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.65-70
    • /
    • 2012
  • The droplet ejection behavior from drop-on-demand printhead are investigated numerically in terms of the non-dimensional parameters. The numerical simulation is performed using a volume-of-fluid model. It is important to eject droplet within the printability range, where the droplet is ejected in stable manner without satellite droplets. Generally, the printability range has been determined by Z number, which is the inverse of Oh number. However, it is found that the ejection of droplets with same Z number can exhibit different behavior depending on the value of Ca and We number. Therefore, it is insufficient to determine the printability range only with Z number. Instead, other non-dimensional parameters, such as Ca and We number, should be considered comprehensively.

정전기력 방식의 Drop-on-Demand 토출을 위한 MEMS 잉크젯헤드 제작 (Fabrication of MEMS Inkjet Head for Drop-on-Demand Ejection of Electrostatic Force Method)

  • 손상욱;김영민;최재용;고한서;김용재;변도영;이석한
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1441-1444
    • /
    • 2007
  • This paper presents a novel electrostatic drop-an-demand ejector with a conductive pole inside nozzle. The MEMS fabricated pole-type nozzle shows a significant improvement in the performance and reliability of forming meniscus and generating a micro dripping mode of droplet out of the meniscus. It is verified experimentally that the use of the pole-type nozzle. The liquid is used D20+SDS+SWNT (5 %wt). The gap between upper electrode and nozzle is about 600 um. Electrostatic drop-an-demand ejection is observed when a DC voltage of 1.5 kV is applied between the control electrode and ground electrode. Droplet diameter is $100{\mu}m$.

Pattern Characteristic by Electrostatic Field Induced Drop-On-Demand Ink-jet Printing

  • Choi, J.Y.;Kim, Y.J.;Son, S.U.;Kim, Y.M.;Lee, S.H.;Byun, D.Y.;Ko, H.S.
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.451-454
    • /
    • 2007
  • This paper presents the pattern characteristic using the electrostatic drop-on-demand ink-jet printing system. In order to achieve the pattern characteristic of electrostatic inkjet printing, the capillary inkjet head system is fabricated using capillary tube, Pt wire and electrode, and is packaged by acrylic board for the accurate alignment between wire and electrode-hole. The applied DC voltage of 1.4 $\sim$ 2.0 kV used for the observation of electrostatic droplet ejection. Electrostatic droplet ejection is directly observed using a high-speed camera. For investigated pattern characteristic, conductive inkjet silver ink used. The higher voltage has a good condition which has micro dripping mode. Also, the droplet size decreases with increasing the supplied DC voltage. This paper shows the pattern which is formed by about 300um. Also, capillary inkjet head system will be applied industrial area comparing conventional electrostatic inkjet head system.

  • PDF

열 잉크젯 프린트헤드의 집중질량 모델링 (Lumped Modeling of Thermal Inkjet Print Head)

  • 이유섭
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.942-949
    • /
    • 2006
  • A lumped model is proposed to predict liquid ejection characteristics of a thermally driven inkjet print head. The model is based on a two-dimensional heat conduction equation, an empirical pressure-temperature equation and a nonlinear hydraulic flow-pressure equation. It has been simulated through the construction of an equivalent R-C circuit, and subsequently analyzed using SIMULINK and a circuit simulation tool, PLECS. Using the model, heating and cooling characteristics of the head are predicted to be in agreement with the IR temperature measurements. The effects of the head geometry on the drop ejection are also analyzed using the nonlinear hydraulic model. The present model can be used as a design tool for a better design of thermal inkjet print heads.

정전기장 유도된 잉크젯 프린터 헤드를 이용한 탄소나노튜브 잉크의 Drop-On-Demand 특성 연구 (The Analysis of Drop-On-Demand Characteristic of Electrostatic Field Induced Inkjet Head System with Carbon Nano Tube (CNT) Ink)

  • 최재용;김용재;손상욱;김영민;변도영;고한서;이석한
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1445-1449
    • /
    • 2007
  • This paper presents the DOD (Drop-On-Demand) characteristic using the electrostatic field induced inkjet printing system. In order to achieve the DOD characteristic of electrostatic field induced inkjet printing, applied the bias voltage of 1.4 kV and the pulse voltage of $2.0\;kV\;{\sim}\;2.7\;kV$ using high voltage pulse generator. Electrostatic field induced droplet ejection is directly observed using a high-speed camera and for investigated DOD characteristic, CNT ink used. The electrostatic field induced inkjet head system has DOD characteristic using pulse generator which can be applied pulse voltage. The bias voltage has a good condition which form meniscus and has micro dripping mode for small size micro droplet. Also, the droplet size decreases with increasing the applied pulse voltage. This paper shows DOD characteristic at electrostatic field induced inkjet head system, Therefore. electrostatic DOD inkjet head system will be applied industrial area comparing conventional electrostatic inkjet head system.

뉴튼유체와 전단희석유체의 액적분사 거동에 대한 수치해석적 연구 (NUMERICAL STUDY OF THE DROPLET EJECTION BEHAVIOR OF NEWTONIAN AND SHEAR-THINNING FLUIDS)

  • 김은정;백제현
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.33-38
    • /
    • 2012
  • The droplet ejection behavior from drop-on-demand printhead are investigated numerically for Newtonian and shear-thinning fluid. The numerical simulation is performed using a volume-of-fluid model. In this study, we compare the printable range in terms of Z number and pinch-off time for Newtonian and shear-thinning fluids. The printability range are found to be 1.08 $$\leq_-$$ Z $$\leq_-$$ 12.9 for Newtonian fluid and 0.8 $$\leq_-$$ Z $$\leq_-$$ 12.9 for shear-thinning fluid. However, air entrainment is observed during merging of primary and satellite droplet within the printability range. The pinch-off time of the shear-thinning fluid is apparently shorter compared to the corresponding Newtonian fluid due to shear-thinning effects and the differences in the pinch-off time is enlarged significantly when the capillary number is larger than 0.5.