• Title/Summary/Keyword: Driving and Control System

Search Result 1,647, Processing Time 0.027 seconds

Control of the Lateral Displacement Restoring Force of IRWs for Sharp Curved Driving

  • Ahn, Hanwoong;Lee, Hyungwoo;Go, Sungchul;Cho, Yonho;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1042-1048
    • /
    • 2016
  • This paper presents a lateral displacement restoring force control for the independently rotating wheelsets (IRWs) of shallow-depth subway systems. In the case of the near surface transit, which has recently been introduced, sharp curved driving performance is required for the city center service. It is possible to decrease the curve radius and to improve the performance of the straight running with the individual torque control. Therefore, the individual torque control performance of the motor is the most important point of the near surface transit. This paper deals with a lateral displacement restoring force control for sharp curved driving. The validity and usefulness of the proposed control algorithm is verified by experimental results using a small-scale bogie system.

An Intelligent Nano-positioning Control System Driven by an Ultrasonic Motor

  • Fan, Kuang-Chao;Lai, Zi-Fa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents a linear positioning system and its control algorithm design with nano accuracy/resolution. The basic linear stage structure is driven by an ultrasonic motor and its displacement feedback is detected by a LDGI (Laser Diffraction Grating Interferometer), which can achieve nanometer resolution. Due to the friction driving property of the ultrasonic motor, the driving situation differs in various ranges along the travel. Experiments have been carried out in order to observe and realize the phenomena of the three main driving modes: AC mode (for mm motion), Gate mode (for ${\mu}m$ motion), and DC mode (for nm motion). A proposed FCMAC (Fuzzy Cerebella Model Articulation Controller) control algorithm is implemented for manipulating and predicting the velocity variation during the motion of each mode respectively. The PCbased integral positioning system is built up with a NI DAQ Device by a BCB (Borland $C^{++}$ Builder) program to accomplish the purpose of an intelligent nanopositioning control.

Development of the Driving-will Control System for a Power-assisted Electric Wheelchair (힘 보조형 전동 휠체어를 위한 구동 의지 제어 시스템 개발)

  • Kong, Jung-Shik;Lee, Bo-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1296-1301
    • /
    • 2012
  • This paper deals with development of the driving-will control system in power-assisted electric wheelchair. Nowadays, population of elderly people has been increased rapidly, and also an electric wheelchair has been considered as the device for the elderly. Especially, power-assisted electric wheelchair can overcome problems that a conventional electric wheelchair holds, such as lack of movement of wheelchair user. In this paper, we propose the sensors system to measure the driving-will force and perform the control action for a power-assisted electric wheelchair. And motion performance of the proposed system is verified through the experiment.

The Performance Improvement for an Active Noise Contort of Automotive Intake System under Rapidly Accelerated Condition (급가속시 자동차 흡기계의 능동소음제어 성능향상)

  • 이충휘;오재응;이유엽;이정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.183-189
    • /
    • 2003
  • The study of the automotive noise reduction has been concentrated on the reduction of the automotive engine noise because the engine noise is the major cause of automotive noise. However, many studies of automotive engine noise led to the interest of the noise reduction of the exhaust and intake system. Recently, the active control method is used to reduce the noise of an automotive exhaust and intake system. It is mostly used the LMS(Least-Mean-Square) algorithm as an algorithm of active control because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, Filtered-X LMS (FXLMS) algorithm is applied to an Active Noise Control system. However, the convergence performance of LMS algorithm went bad when the FXLMS algorithm was applied to an active control of the induction noise under rapidly accelerated driving conditions. So, in order to solve this problem, the modified FXLMS algorithm is proposed. In this study, the improvement of the control performance using the modified FXLMS algorithm under rapidly and suddenly accelerated driving conditions was identified. Also, the performance of an active control using the LMS algorithm under rapidly accelerated driving conditions was evaluated through the theoretical derivation using a chirp signal to have similar characteristics with the induction noise signal.

A Fundamental Study on the Control of Ride Comfort and Attitude for In-wheel Motor Vehicles (인휠모터 구동차량의 승차감 및 자세제어를 위한 기초적 연구)

  • Kim, Y.R.;Park, C.;Wang, G.N.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.91-97
    • /
    • 2012
  • It is being accelerated to develop environment-friendly vehicles to solve problems on the energy and environment of earth. The electric driving motor commonly installed in these vehicles has the excellent control capability such as fast response and accurate generation to torque control command. Especially, in-wheel motor has the additional merit such as independently driving each wheel in vehicle. Recently, being developed various control algorithm to enhance the safety and stability of vehicle motion using actively the merits of in-wheel motor. In addition to that, being issued the possibility of enhancing the ride comfort and attitude of vehicle motion such as pitching and rolling. In this paper, investigate the theoretical relationship between the braking/driving force and the motion of sprung mass of vehicle and propose the control method to enhance the ride comfort and attitude of vehicle motion. The proposed control method is proved through the simulation with vehicle model provided by TruckSim software which is commercial one and specializes in vehicle dynamics.

Behavior Analysis of In-wheel Drive Type 6WD/6WS Vehicle Based on System Modeling and Driving Simulation (시스템 모델링 및 주행 시뮬레이션을 통한 인휠드라이브 타입 6WD/6WS 차량 플랫폼의 주행 거동 분석)

  • Lee, Jung-Yeob;Suh, Seung-Whan;Shon, Woong-Hee;Yu, Seung-Nam;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.353-360
    • /
    • 2010
  • A skid-steering method which applied to the various mobile robot platforms currently shows its effectiveness in the specified field areas and purposes. This system contains however, several problems of its intrinsic properties such as slippages occurred by different moving direction between vehicle's driving and wheel's rotary and difficulties of driving performance control and so on. This paper deals with the suggestion of suitable control algorithm for 6WD/6WS skid steering wheeled vehicle and verified its feasibility by analyzing the behavior of 6WD/6WS skid-steered wheeled vehicle model and by applying the engineering analytical method to the considered mobile platform. The Performance of vehicle model is evaluated by using slip mode control to follow the steering input and, as a future work, this control algorithm could be applied to real 6WD/6WS in-wheel drive type vehicle finally.

THE BASIC DESIGN AND ANALYSIS OF UNMANNED VEHICLE FOR TH TELE-OPERATION CONTROL (원격주행을 위한 무인 자동차에 관한 기본설계와 성능분석에 관한 연구)

  • 심재흥;윤득선;김민석;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.139-139
    • /
    • 2000
  • The subject of this paper is the tole operation for unmanned vehicle. The aim is studied in context of motor control system and algorithms for the mid to low level control of tele operation unmanned vehicle described. Modern, vehicle related researches have been implemented about control, chassis, body and safe쇼 but now is to driving comfort, I.T.S. and human factor, etc. As a result of this fact, unmanned vehicle is main research topic over the world but it is still very expensive and unreasonable. A hierarchical approach is studied in context of motor control system and algorithms for the mid to low level control of tele operation unmanned vehicle described. The real time control and monitoring of longitudinal, lateral, Pitching motion is to be solved by system integration and optimization technique. We show the experimental result about fixed brake range test and acceleration test. And all system is to integrated for driving simulator and unmanned vehicle.

  • PDF

Driving Characteristics of Pneumatic Cylinder with Relief Valve Cushion Devices (릴리프밸브 쿠션기구 내장형 공기압 실린더의 구동 특성)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2016
  • This paper presents the meter-out and meter-in speed control characteristics of a pneumatic cylinder with relief valve type cushion device. The piston displacement and velocity are measured to investigate high speed driving performance with variation of the pressure setting in relief valve, air supply pressure, load mass, the supply and exhaust flow rate from the cylinder. Also, the internal pressures and temperatures driving pressure and cushion chamber are measured. The piston displacements and velocities of meter-out and meter-in control are compared experimentally determined data. A comparison experimental data meter-out and meter-in control show that a relief valve type cushion device is suitable for high speed pneumatic cylinders. The desired response characteristics of piston displacement and velocity are satisfactory adjust the pressure setting of a relief valve with varying system parameters such as air supply pressure, load mass and controlled flow rate.

Obstacle Detection and Driving Mode Control for a Mobile Robot with Variable Single-tracked Mechanism (가변트랙형 주행로봇의 장애물 탐지와 주행모드제어)

  • Choi, Keun-Ha;Jeong, Hae-Kwan;Hyun, Kyung-Hak;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • In this paper, we propose a new driving mode control algorithm for a mobile robot based on obstacle detection. The robot has a variable geometry single-tracked mechanism, so it can maximize a contact length with ground for the adaptability to off-road and puesue a stable system due to the lower center of gravity. However this robot system embodied passive type according to operator. In this reason, several problems are detected. So, this research presents a new method of obstacle detection using PSD infrared sensors and translates the variable tracks on the best suited driving mode actively. And experimental results about mentioned are presented.

HUMAN-IN-THE-LOOP EVALUATION OF A VEHICLE STABILITY CONTROLLER USING A VEHICLE SIMULATOR

  • Chung, T.;Kim, J.;Yi, K.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.109-114
    • /
    • 2004
  • This paper presents a closed-loop evaluation of the Vehicle Stability Control (VSC) system using a vehicle simulator. Human driver-VSC interactions have been investigated under realistic operating conditions in the laboratory. Braking control inputs for vehicle stability enhancement have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. A driving simulator has been validated using actual vehicle driving test data. Real-time human-in-the loop simulation results in realistic driving situations have shown that the proposed controller reduces driving effort and enhances vehicle stability.