• Title/Summary/Keyword: Driving Stress

Search Result 370, Processing Time 0.028 seconds

Program Development for Vibration Performance Evaluation of Powder Transfer Equipment

  • Lee, Hyoung-Woo;Ryu, Jeong-Hyeon;Park, Noh-Gill
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.60-65
    • /
    • 2006
  • A vibrational model of powder transfer equipment based on the lumped parameter method was developed, in which the operating motion consists of surging, bouncing, and pitching. After decoupling the equation of motion, the vibrational excitation source of the pitching motion was removed. So the designers are able to plan the optimum design to adjust the motion trajectory of the powder transfer equipment. That is, a procedure to adjust the motion trajectory of powder transfer equipment by changing design specifications such as the installation position, the direction of the motor, the driving speed, the mass unbalance, the stiffness coefficient, and the installation position of the support spring, is presented in this paper. The powder transfer equipment manufactured according to the results of this study did not suffer fatigue destruction, since the maximum stress on the basket structure was sufficiently small.

A Study on the Driving Principles of a Novel Non-contact Surface Actuator Using Combination of Magnetic Force (비접촉 평면 구동기의 자기력 조합 방식 구동 원리)

  • Jung, Kwang-Suk;Baek, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.115-121
    • /
    • 2001
  • In micro automation technology, the concurrent realization of a high resolution and a large operating rage has been achieved by a dual actuator, usually called by piggy-back system, conventionally. But, because of its manufacturing cost, the complexity of control, and the limit of overall bandwidth, the contract-free and single servo actuators have been suggested with specific applications. In this paper, we suggest a novel non-contact surface actuator suing combination of the Lorentz force and the magnetized force, and discuss the actuating principles including an analytical approach. Differently from the existing planar system, an operating range of the suggested system can be expanded by an additional attachment of active elements. Therefore, it is estimated to be suitable for the next-generation moving system.

  • PDF

Charge Pump Circuits with Low Area and High Power Efficiency for Memory Applications

  • Kang, Kyeong-Pil;Min, Kyeong-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.257-263
    • /
    • 2006
  • New charge pump circuits with low area and high power efficiency are proposed and verified in this paper. These pump circuits do not suffer the voltage stress higher than $V_{DD}$ across their pumping capacitors. Thus they can use the thin-oxide MOSFETs as the pumping capacitors. Using the thin-oxide capacitors can reduce the area of charge pumps greatly while keeping their driving capability. Comparing the new pump (NCP-2) with the conventional pump circuit using the thick-oxide capacitors shows that the power efficiency of NCP-2 is the same with the conventional one but the area efficiency of NCP-2 is improved as much as 71.8% over the conventional one, when the $V_{PP}/V_{DD}$ ratio is 3.5 and $V_{DD}$=1.8V.

The Design and Implementation of a Driver's Emotion Estimation based Application/Service Framework for Connected Cars (커넥티드 카를 위한 운전자 감성추론 기반의 차량 제어 및 애플리케이션/서비스 프레임워크)

  • Kook, Joongjin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.100-105
    • /
    • 2018
  • In this paper, we determined the driver's stress and fatigue level through physiological signals of a driver in the connected car environment, accordingly designing and implementing the architecture of the connected cars' platforms needed to provide services to make the driving environments comfortable and reduce the driver's fatigue level. It includes a gateway between AVN and ECU for the vehicle control, a framework for native applications and web applications based on AVN, and a sensing device and an emotion estimation engine for application services. This paper will provide the element technologies for the connected car-based convergence services and their implementation methods, and reference models for the service design.

Structural Analysis for Gear Column of Large Bore Diesel Engine (선박 추진용 대형 디젤엔진 기어컬럼의 구조해석)

  • Lee, Jong-Hwan;Nam, Dae-Ho;Son, Jung-Ho;Bae, Jong-Gug
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.448-452
    • /
    • 2008
  • 2-stroke marine diesel engine has generally one exhaust valve and three fuel injection nozzle which are key component for engine's performance and combustion. Fuel injection and exhaust valve driving system are driven by rotating of camshaft. Rotation of crank shaft drives the cam shaft through gear train that is composed of $3{\sim}4$ gear wheels. Gear column supporting the gear wheel has to bear against the dynamics forces by engine running as well as gearing forces. In this paper, structural analysis for engine structure and fatigue strength assessment of welded joint is shown. Repeatedly full cyclic simulation during one cycle is performed to investigate the structural behavior of engine. Fatigue analysis is carried out based on IIW using submodeling technique to obtain more detailed stress distribution.

  • PDF

Suppression Control of the Drivetrain-Oscillations of an Electric Vehicle Using Taguchi Method (다구찌 방법을 이용한 전기자동차 구동계의 진동 억제 제어)

  • Kim, Ho-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.463-468
    • /
    • 2009
  • Torsional oscillations of the drivetrain in electric vehicles are generated under rapid driving conditions. These lead to an uncomfortable jerking of the vehicle and an increased stress of the mechanical components. To suppress torsional oscillations, the low pass and notch filters between the torque command from the acceleration pedal and electric motor input torque are suggested. The filter parameters are optimized based on Taguchi method with $L_{18}(3^5)$ orthogonal array. The signal to noise (S/N) ratio mainly depends on slew rate of motor input torque, damping ratio and natural frequency of notch filter. With the proposed suppression control scheme, the S/N ratio is shown to be increased by 4.7dB and the torque overshoot of the drive shaft is reduced to 30%.

Design and Application of Accelerated Run-in Test for ECU Quality Improvement (ECU 품질 개선을 위한 Accelerated Run-in Test 설계 및 효과고찰)

  • Cho, Hyogeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.145-151
    • /
    • 2014
  • Modern vehicle has a lot of ECU(Electronic Control Unit) products to control many parts such as engine, transmission, brake, body and so on. ECU quality is one of important factors related to vehicle quality and driver's safety. Based on Bath-tub curve which presents failure rate during product lifetime, we designed and applied Accelerated Run-in Test into manufacturing line by simulating stress amount to ECU and developing the required software and efficient test equipment for mass production. This test makes ECU products stressed through electrical and thermal stresses under excessive driving condition, which induce potential initial failure of components in the ECU during production. The outcome until these days proved that Acceleration Run-in Test have reduced initial failure rates and increased quality of ECU products in the field outstandingly.

Structural Strength Analysis of ATV Knuckle (ATV 너클의 구조강도 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.137-144
    • /
    • 2013
  • This study analyzes structural analysis with fatigue and natural frequency on ATV knuckle. The maximum equivalent stresses are happened at the end of knuckle in case of model 1, 2 and 3. As these stresses are below the allowable stress, these models can be stable structurally. The fatigue damage possibility at model 1 becomes more than model 2 and 3. Model 2 or 3 has more durability than model 1 at fatigue. As the resonances are happened at the frequency more than 2000 Hz in case of model 1, 2 and 3, there is no resonance possibilities at real driving. Prevention against damage and durability prediction on automotive chassis parts can be effectively improved by applying this study result on knuckle and improving structural strength.

Behavior of Reinforced Earth Retaining Wall for Connector System Driving the Settlement of Reinforcement (보강재 침하를 허용하는 연결시스템을 적용한 보강토옹벽의 거동)

  • Jong-Keun Oh;Jeong, Jong-Gi;Lee, Song
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.156-161
    • /
    • 2006
  • Recently, construction of soil-reinforced segmental retaining walls which used geosynthetics are being increased day by day due to its construction efficiency, economic efficiency, and its aesthetic view. The conventional reinforced earth retaining wall has the connector system to fix the reinforcement and block However, this system may cause the crack of block and the rupture of reinforcement due to the stress concentration near the face of reinforced earth retaining wall In this study, the new connector system, which is able to allow the settlement of reinforcement, was applied to analyze the effect of connector system of reinforced earth retaining wall The connection strength tests and centrifugal tests for both the conventional reinforced earth retaining wall and the settlement reinforced earth retaining wall were performed to compare the results

  • PDF

Near Time Maximum Disturbance Design for Second Order Oscillator with Model Uncertainty (모델 불확실성을 갖는 이차 오실레이터에 대한 근사화된 최대 시간 교란 신호 설계)

  • You Kwan-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.205-211
    • /
    • 2003
  • In this paper we propose a disturbance design method to test a system's stability. It is shown that the time maximum disturbance is represented in bang-bang and state feedback form. To maximize the time severity index, the value of disturbance is determined by the associated switch curve. The original switch curve is vulnerable to model uncertainties and takes much calculation time. We propose an improved method to approximate the original switch curve. This reduces the computational time and implements sufficiently to test the stable system. Simulation results show how the approximate switch curve can be used to stress a system by driving it to oscillation along the maximum limit cycle.