• Title/Summary/Keyword: Drive circuit

Search Result 753, Processing Time 0.025 seconds

A Study of Two Phase Chopper System with Four Separate Groups of DC Motors in Powering (타동용 4 분제 2상쵸퍼방식의 특성)

  • 정연택;한경희;김용주;이영일;오봉환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.3
    • /
    • pp.171-178
    • /
    • 1987
  • A study of two phase chopper system with four separate groups of DC motors in powering. A novel two phase chopper system with four separate groups of DC motors which applies the principles of two phase chopper with two separate groups of DC motors is dealt with this article. The main circuit consists of eight sets of chopping parts, four diodes and four separate groups of DC motors. Four groups of DC motors are driven through the series and parallel connections to each other in accordance with the operating conditions of the choppers. Although the proposed chopper circuit requires more circuit elements than the conventional two phase chopper system with combined output or two phase chopper system with two separate groups of DC motors, it has the following advantages` (1). It is possible to drive twice as much motors as conventional system does, using esisting receiving-and equipments and motors. (2). It is possible to control load voltage continuously from 0 to source voltage by changing time-ratio from 0 to 1. (3). Load current division becomes equalized. Therefore it is possible to drive not only series motors but also shunt and separately exited motors. (4). When smoothing reactor L is small, harmonic components of the proposed circuit is not so large. Therefore, the value of L can be determined from viewpoints of allowable value of ripple-ratio and current unbalance factor.

A Study on Flicker Free LED Driver for Dimming MR16 Electronic Transformer (조광기용 MR16 안정기 호환 Flicker Free LED 구동회로 연구)

  • Kim, Taek-Woo;Hong, Sung-Soo;Yeom, Bong-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.327-331
    • /
    • 2014
  • LED(Light Emitting Diode) is a semiconductor device utilizing electroluminescent effect is a phenomenon in which a type of P-N junction diode, the light of short wavelength which a voltage is applied in the forward direction is released. LED is advantageous in reducing the energy as environmentally materials that can greatly reduce the carbon emissions, recent it has attracted attention IT(Information Technology) and GT(Green Technology) industry. In addition, there are advantages long life, high efficiency, and excellent response speed, LED have come into the spotlight as the illumination means to replace the existing fluorescent light and incandescent light bulb. When connecting to MR16 electronic transformer for existing LED driver circuit, due to malfunction of the dimmer and the electronic transformer, flicker occurs and linear dimming is not possible. Therefore, in this paper, we suggest an LED drive circuit there is no flicker with the corresponding dimming MR16 electronic transformer. Further, we explain the principles of the LED current control technique and the principle of the drive circuit of the LED, in order to validate the proposed circuit through prototyping and simulation.

Optimization of Drive-in Temperature at Doping Process for Mono Crystalline Silicon Solar Cell (단결정 실리콘 태양전지의 도핑 최적화를 위한 확산 온도에 대한 연구)

  • Cho, Sung-Jin;Song, Hee-Eun;Yoo, Kwon-Jong;Yoo, Jin-Soo;Han, Kyu-Min;Kwon, Jun-Young;Lee, Hi-Deok
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • In this paper, the optimized doping condition of crystalline silicon solar cells with $156{\times}156\;mm^2$ area was studied. To optimize the drive-in temperature in the doping process, the other conditions except variable drive-in temperature were fixed. These conditions were obtained in previous studies. After etching$7\;{\mu}m$ of the surface to form the pyramidal structure, the silicon nitride deposited by the PECVD had 75~80nm thickness and 2 to 2.1 for a refractive index. The silver and aluminium electrodes for front and back sheet, respectively, were formed by screen-printing method, followed by firing in 400-425-450-550-$850^{\circ}C$ five-zone temperature conditions to make the ohmic contact. Drive-in temperature was changed in range of $830^{\circ}C$ to $890^{\circ}C$to obtain the sheet resistance $30{\sim}70\;{\Omega}/{\box}$ with $10\;\Omega}/{\box}$ intervals. Solar cell made in $890^{\circ}C$ as the drive-in temperature revealed 17.1% conversion efficiency which is best in this study. This solar cells showed $34.4\;mA/cm^2$ of the current density, 627 mV of the open circuit voltage and 79.3% of the fill factor.

Development of the 120kV/70A High Voltage Switching Circuit with MOSFETs Operated by Simple Gate Drive Unit (120kV/70A MOSFETs Switch의 구동회로 개발)

  • 송인호;최창호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.24-29
    • /
    • 2003
  • A 120kV/70A high voltage switch has been installed at Korea Atomic Energy Research Institute(KAERI) in Taejon to supply power with Korea Superconducting Tokamak Advanced Research(KSTAR) Neutral Beam Injection(NBI) system. NBI system requires fast cutoff of the flower supply voltage for protection of the grid when arc detected and fast turn-on the voltage for sustaining the beam current. Therefore the high voltage switch and arc current detection circuit are important part of the NBI power supply. There are much need for high voltage solid state switches in NBI system and a broad area of applications. This switch consisted of 100 series connected MOSFETs and adopted the proposed simple and reliable gate drive circuit without bias supply. Various results taken during the commissioning phase with a 100kW resistive load and NBI source arc shown. This paper presents the detailed design of 120kV/70A high voltage MOSFETs switch and simple gate drive circuit. Problems with the high voltage switch and gate driver during thefabrication and test and solutions are also presented.

Pixel Circuit with Threshold Voltage Compensation using a-IGZO TFT for AMOLED

  • Lee, Jae Pyo;Hwang, Jun Young;Bae, Byung Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.594-600
    • /
    • 2014
  • A threshold voltage compensation pixel circuit was developed for active-matrix organic light emitting diodes (AMOLEDs) using amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO-TFTs). Oxide TFTs are n-channel TFTs; therefore, we developed a circuit for the n-channel TFT characteristics. The proposed pixel circuit was verified and proved by circuit analysis and circuit simulations. The proposed circuit was able to compensate for the threshold voltage variations of the drive TFT in AMOLEDs. The error rate of the OLED current for a threshold voltage change of 3 V was as low as 1.5%.

Stabilizing circuit of doppler beat signal obtained by coherence-dependent fiber-optic laser doppler velocimeter

  • Shinohara, shigenobu;Michiwaki, Motohiko;Ikeda, Hiroaki;Yoshida, Hirofumi;Sawaki, Toshiko;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.434-439
    • /
    • 1993
  • Described is a stabilizing circuit of the Doppler beat signal obtained by the coherence-dependent fiber-optic laser Doppler velocimeter (LDV), which employs both a self-mixing laser diode (SM-LD) and a 10m-100m long optical fiber. The stabilizing circuit maintains the SM-LD drive current at an optimum value, which gives a maximum Doppler signal during long hours.

  • PDF

Chaos Synchronization using Chua Circuit (Chua 회로에서의 카오스 동기화)

  • 배영철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.247-254
    • /
    • 2000
  • Chua's circuit is a simple electronic network which exhibits a variety of bifurcation and attractors. The circuit consists of two capacitors, an inductor, a linear resistor, and a nonlinear resistor. In this paper, a transmitter and a receiver using two identical Chua's circuits are proposed and a synchronizations methods are investigated. Since the synchronization of the transmission system or nonidea system are impossible by coupled synchronization, the drive-response synchronization theory were used.

  • PDF

EMI and Switching Loss Reductions of a Full -Bridge PWM Converter for DC Motor Drive

  • Naoya, Yokoyama;Ishimatzu, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.46.4-46
    • /
    • 2001
  • This paper presents a Five-Switch Converter (FSC) circuit that can operate like a full-bridge PWM converter for driving the DC motor in bidirectional. One of the main advantages of this circuit is to reduce the on-off switching number of power MOSFET. In stead of turning on-off simultaneously two of the four power MOSFET´s in a switching period, this circuit operates only one power MOSFET, while continuously leaving another two on and the other two off in the switching period. Consequently ...

  • PDF

An Improved Gate Control Scheme for Overvoltage Clamping Under High Power IGBTs Switching (IGBT 스위칭시 괴전압 제한을 위한 게이트 구동기법)

  • 김완중;최창호;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.323-327
    • /
    • 1998
  • Under high power IGBTs Switching, a large overvoltage is induced across the IGBT module due to the stray inductance in the circuit. This paper proposes a new gate drive circuit for high power IGBTs which can actively suppress the overvoltage across the driven IGBT at turn-off while preserving the most simple and reliable power circuit. The turn-off driving scheme has adaptive feature to the amplitude of collector current, so that the overvoltage can be limited much effectively at the fault collector current. Experimental results under various normal and fault conditions prove the effectiveness of the proposed.

  • PDF

Chaos Synchronization using Power Line of Chun′s Circuit (전력선을 이용한 Chua 회로에서의 카오스 동기화)

  • 배영철;김이곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.187-190
    • /
    • 2000
  • Chua's circuit is a simple electronic network which exhibits a variety of bifurcation and attractors. The circuit consists of two capacitors, an inductor, a linear resistor, and a nonlinear resistor. In this paper, a transmitter and a receiver using two identical Chua's circuits are proposed and synchronizations of a power line are investigated. Since the synchronization of the power line system is impossible by coupled synchronization, theory having both the drive-response and the coupled synchronization is proposed. As a result, the chaos synchronization has delay characteristics in the power line transmission system caused by the line parameters L and C.

  • PDF