• Title/Summary/Keyword: Drag Measurements

Search Result 67, Processing Time 0.03 seconds

PIV Investigation on the Skin Friction Reduction Mechanism of Outer-layer Vertical Blades (경계층 외부 수직날의 마찰저항 저감 기구에 대한 PIV 관측)

  • Park, Hyun;An, Nam-Hyun;Park, Seong-Hyoen;Chun, Ho-Hwan;Lee, In-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.20-28
    • /
    • 2011
  • An experimental assessment has been made of the drag reducing efficiency of the outer-layer vertical blades, which were first devised by Hutchins. The drag reduction efficiency of the blades was reported to reach as much as 30%. However, the drag reduction efficiency was quantified only in terms of the reduction in the local skin-friction coefficient. In the present study, a series of drag force measurements in towing tank has been performed toward the assessments of the total drag reduction efficiency of the outer-layer vertical blades. A maximum 9.6% of reduction of total drag was achieved. The scale of blade geometry is found to be weakly correlated with outer variable of boundary layer. In addition, detailed flow field measurements have been performed using 2-D time resolved PIV with a view to enabling the identification of drag reduction mechanism.

Analysis of Drag Measurements on T-50 Aircraft Model Wind Tunnel Testing (T-50 항공기모델 풍동시험에서의 항력측정 연구)

  • Kim, Hyung-Kook;Yang, Hee-Don;Lee, Il-Woo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1564-1568
    • /
    • 2004
  • The requirements of internal balance were studied that should be considered on performing force & moment transonic wind tunnel testing to develop combat aircraft. In many insecure factors of test condition, uncertainty analysis was conducted to verify one drag count measurements. The analysis result was applied to T-50 aircraft model and compared for data verifaction. In conclusion, the aerodynamicist should estimate the validation and accuracy of test data by having an overall grasp of system components including internal balance. It will help him get high productivity of testing and effective validated data at tunnel.

  • PDF

Circular cylinder drag reduction using piezoelectric actuators

  • Orazi, Matteo;Lasagna, Davide;Iuso, Gaetano
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • An active flow control technique based on "smart-tabs" is proposed to delay flow separation on a circular cylinder. The actuators are retractable and orientable multilayer piezoelectric tabs which protrude perpendicularly from the model surface. They are mounted along the spanwise direction with constant spacing. The effectiveness of the control was tested in pre-critical and in post-critical regime by evaluating the effects of several control parameters of the tabs like frequency, amplitude, height, angular position and plate incidence with respect to the local flow. Measurements of the mean static pressure distribution around the cylinder were used to estimate the pressure drag coefficient. The maximum drag reduction achieved in the pre-critical regime was of the order of 30%, whereas in the post-critical regime was about 10%, 3% of which due to active forcing. Furthermore, pressure fluctuation measurements were performed and spectral analysis indicated an almost complete suppression of the vortex shedding in active forcing conditions.

Drag reduction of a disk with an upstream rod

  • Zhang, Panfeng;Gao, Lei;Wang, Jinjun
    • Wind and Structures
    • /
    • v.9 no.3
    • /
    • pp.245-254
    • /
    • 2006
  • The pressure and drag measurements were carried out in the wind tunnel to investigate the drag reduction of the disk by using an interference rod placed upstream. The results indicate that there is a pair of standing vortices in the front stagnation region of the disk induced by the rod. The standing vortices can decrease the pressure on the disk upwind side; hence it can reduce the drag of the disk. With an increasing rod diameter, the standing vortices are strengthened and more drag reduction can be achieved for the disk. With rod diameter d/D = 0.05 (d, D are the diameters of rod and disk, respectively), the total drag of the disk can be reduced by about 9% compared with that of the bare disk.

Drag Reducton of Pipe Wall For Fluid Flow due to Injected Polymer Solution - III. Consideration of Entrance Region Flow of Drag Reducing Fluids- (고분자용액에 의한 유체수송관벽의 저항감소 -III. 저항감소유체의 입구흐름 영역에 대한 고찰-)

  • 김영보;유경옥
    • Fire Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.21-35
    • /
    • 1991
  • As a part of studies of drag reduction phenomenon, at the entrance flow region of abrupt contraction tube flowing water, dilute and concentrated drag reducing polymer solutions contraction losses are estimated experimentally. Futher more, entrance lengths are considered theoretically and are measured experimentally. In the present experiment, fluid temperature is fixed l$0^{\circ}C$ and flow rates are 3,000

  • PDF

Numerical analysis of drag reduction of turbulent flow in a pipe (원관내 난류의 저항감소현상에 대한 수치해석)

  • 홍성진;김광용;최형진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.733-739
    • /
    • 1999
  • A modified low-Re $k-\varepsilon$ model is used for the calculation of drag-reducing turbulent flow by polymer injection in a pipe. With the viscoelastic model, molecular viscosity in the definition of turbulent viscosity is related to elongations viscosity of the solution to account for the effects of drag reduction. Finite volume method is used for the discretization, and power-law scheme is used as a numerical scheme. Computed dimensionless velocity profiles are in good agreements with the experimental data in case of low drag reductions. However, in case of high drag reductions, they deviate largely from the measurements in the central zone of the flow field.

  • PDF

Laboratory measurements of the drag coefficient over a fixed shoaling hurricane wave train

  • Zachry, Brian C.;Letchford, Chris W.;Zuo, Delong;Kennedy, Andrew B.
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.193-211
    • /
    • 2013
  • This paper presents results from a wind tunnel study that examined the drag coefficient and wind flow over an asymmetric wave train immersed in turbulent boundary layer flow. The modeled wavy surface consisted of eight replicas of a statistically-valid hurricane-generated wave, located near the coast in the shoaling wave region. For an aerodynamically rough model surface, the air flow remained attached and a pronounced speed-up region was evident over the wave crest. A wavelength-averaged drag coefficient was determined using the wind profile method, common to both field and laboratory settings. It was found that the drag coefficient was approximately 50% higher than values obtained in deep water hurricane conditions. This study suggests that nearshore wave drag is markedly higher than over deep water waves of similar size, and provides the groundwork for assessing the impact of nearshore wave conditions on storm surge modeling and coastal wind engineering.

Attitude Angle and Drag Coefficient Measurements of Free-Falling Hemisphere Using a Visualization Technique (가시화 기법을 사용한 자유낙하하는 반구모델의 자세각 및 항력계수 측정)

  • Song, Hakyoon;Lee, Sungmin;Lee, Jong Kook;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.619-626
    • /
    • 2017
  • In this work, the effect of attitude angle variation on drag coefficients of hemisphere in a Mach 6 flow has been investigated. Experiments were conducted in a shock tunnel and a free-falling technique was used to minimize flow disturbance by a sting. For attitude and drag coefficient measurements of a free-falling hemisphere, a free-falling technique based on a releasing mechanism with a stair-typed module and an electromagnet was developed. A shadowgraph technique was used for flow visualization using a high-speed camera.

Verification of drag-reduction capabilities of stiff compliant coatings in air flow at moderate speeds

  • Boiko, Andrey V.;Kulik, Victor M.;Chun, Ho-Hwan;Lee, In-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.242-253
    • /
    • 2011
  • Skin frictional drag reduction efficiency of "stiff" compliant coating was investigated in a wind tunnel experiment. Flat plate compliant coating inserts were installed in a wind tunnel and the measurements of skin frictional drag and velocity field were carried out. The compliant coatings with varying viscoelastic properties had been prepared using different composition. In order to optimize the coating thickness, the most important design parameter, the dynamic viscoelastic properties had been determined experimentally. The aging of the materials (variation of their properties) during half a year was documented as well. A design procedure proposed by Kulik et al. (2008) was applied to get an optimal value for the coating thickness. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coatings. The compliant coatings with the thickness h = 7mm achieved 4~5% drag reduction within a velocity range 30~40 m/s. The drag reduction mechanism of the attenuation of turbulence velocity fluctuations due to the compliant coating was demonstrated. It is envisioned that larger drag reduction effect is obtainable at higher flow velocities for high speed trains and subsonic aircrafts.

Influence of Droplet Drag Models on Diesel Spray Characteristics under Ultra-High Injection Pressure Conditions (극초고압 조건에서 디젤 분무 특성에 미치는 액적 항력 모델의 영향)

  • Ko, Gwon-Hyun;Lee, Seong-Hyuk;Lee, Jong-Tai;Ryou, Hong-Sun
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.42-49
    • /
    • 2004
  • The present article investigates the influence of droplet drag models on predictions of diesel spray behaviors under ultra-high injection pressure conditions. To consider drop deformation and shock disturbance, this study introduces a new hybrid model in predicting drag coefficient from the literature findings. Numerical simulations are first conducted on transient behaviors of single droplet to compare the hybrid model with earlier conventional model. Moreover, using two different models, extensive numerical calculations are made for diesel sprays under ultra-high pressure sprays. It is found that the droplet drag models play an important role in determining the transient behaviors of sprays such as spray tip velocity and penetration lengths. Numerical results indicate that this new hybrid model yields the much better conformity with measurements especially under the ultra-high injection pressure conditions.

  • PDF