• Title/Summary/Keyword: Down conductor

Search Result 40, Processing Time 0.025 seconds

Development of Micro-EDM Machine for Microshaft and Microhole Machining (미세 축ㆍ구멍 가공을 위한 미세방전가공기의 개발)

  • 김규만;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.55-61
    • /
    • 1998
  • Recently, the needs of machining technologies of very small parts have been increasing with advent of micro-revolution. These technologies have mostly used the method applied to semi-conductor production process such as LIGA, etc. But they have serious difficulties to settle down in terms of workpiece materials, machining thickness, 3-dimensional structure. Therefore. mciro-machining technology using EDM(Electrical Discharge Machining) was proposed. It is very difficult to machine the micro-parts (microshaft, microhole) using conventional machining. Micro-machining using BDM can machine the micro-parts easily because it requires little machining force. This MEDM(Micro-EDM) need the capabilities to move a electrode and control a discharge energy precisely, and the gap control strategy to maintain the optimal discharge condition is necessary. Therefore, in this study, the new EDM machine with high precision motion stage and high-performance EDM device was developed. Using this MEDM machine, we have machined microshaft and microhole with various shapes and sizes.

  • PDF

Analysis of the Electric Potential distribution and Evaluation of Electric Shock Risk in Bathtub (욕조에서의 전위분포 해석 및 전격재해 위험성 평가)

  • Kim, Chong-Min;Kim, Han-Sang;Jung, Jong-Wook;Jung, Jin-Soo;Kim, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.05a
    • /
    • pp.37-40
    • /
    • 2006
  • This paper presents the evaluation electric shock risk In bath so that we made and designed a bathtub which is the same size in real public bath. and then we did an experiment, provided of electric leakage in various conditions so, we measured how to form an electric potential and knew the electric potential is formed variously under exposed conductor in bath. also we made certain that electric shock risk is down if we insert an insulated pipe in bathtub pipe which is prevent from being formed the electric field sharply.

  • PDF

반도체 제조공정 중 발생하는 오염입자 측정에 관한 연구

  • Na Jeong-Gil;Kim Tae-Seong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.145-149
    • /
    • 2006
  • As the minimum feature size decreases, it is more difficult to control critical contaminant particles. For 16GB flash memory introduced by Samsung a few months ago, 50nm process was used and in this case, contaminant particles as small as 25nm should be control led. The particle beam mass spectrometer (PBMS) was developed to directly sample particles at pressures down to 100 mtorr. This instrument is sensitive to small particles (>5nm) produced in low concentrations ($>20cm^{-3}$). The PBMS has proved to be effect ive in measuring particles generated during semi-conductor fabrication processes, such as low-pressure chemical vapor deposition (LPCVD) of thin films. The operating principle of the PBMS and some measurement results are reviewed in this paper.

  • PDF

Analysis of Electromigration in Nanoscale CMOS Circuits

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.1
    • /
    • pp.19-24
    • /
    • 2013
  • As CMOS technology is scaled down more aggressively, the reliability mechanism (or aging effect) caused by the diffusion of metal atoms along the conductor in the direction of the electron flow, also called electromigration (EM), has become a major reliability concern. With the present of EM, it is difficult to control the current flows of the MOSFET device and interconnect. In addition, nanoscale CMOS circuits suffer from increased gate leakage current and power consumption. In this paper, the EM effects on current of the nanoscale CMOS circuits are analyzed. Finally, this paper introduces an on-chip current measurement method providing lifetime electromigration management which are designed using 45-nm CMOS predictive technology model.

Evaluation on Electric Shock Risk due to the Electric Potential Distribution in Bathtub (욕조에서의 전위분포 해석을 통한 전격재해 위험성 평가)

  • Kim, Chong-Min;Kim, Han-Sang;Kim, Sung-Chul;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.40-46
    • /
    • 2007
  • It is evaluated that electric shock risk in bath so that we made and designed a bathtub which is the same size in real public bath. And then, we did an experiment, provided of electric leakage in various conditions, so we measured how to form an electric potential and knew the electric potential is formed variously under exposed conductor in bath. Also, we made certain that electric shock risk is down if we insert an insulated pipe in bathtub pipe which is prevent from being formed the electric field sharply. The results show that the increased shock risk and safe distance are estimated by the bathtub of limited width and depth, and the voltage simulated on the basis of Flux 3D concept is compared with the measured value.

Study of the Electric Shock Risk in Water at the Waterpark, Public Bath (물놀이.입욕시설에서의 수중 감전 위험성 연구)

  • Kim, Chong-Min;Kim, Han-Sang;Kim, Gi-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.93-94
    • /
    • 2006
  • This paper presents the evaluation electric shock risk in water so that we made and designed a bathtub which is the same size in real public bath. and then we did an experiment, provided of electric leakage in various conditions so, we measured how to form an electric gradient and knew the electric gradient is formed variously under exposed conductor in water. also we made certain that electric shock risk is down if we insert an insulated pipe in bathtub pipe which is prevent from being formed the electric field sharply.

  • PDF

Characteristic Analysis of Monopole Antenna and PIFA Mounted on Handheld Telephone (휴대용 이동통신 전화기에 탑재된 모노폴 안테나와 PIFA 안테나의 특성 해석)

  • Park, Ju-Derk;Kim, Nam
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.2
    • /
    • pp.31-40
    • /
    • 1999
  • Characteristics of monopole antenna and planar conductor structure mounted on handheld telephone are anlayzed by using FDTD method. Feeding of monopole antenna is implemented with lumped elements and plastic case is coated on the surface of conductor box. Otherwise, resonant frequency of handheld telephone mounting monopole antenna with no plastic case is 877MHz, when plastic case (${\varepsilon}_r=2$) is coated, the resonant frequency is down to 82MHz and the bandwidth is broadened about 1.5 times. Planar structure of handheld telephone mounted on the body makes to change far-field gain radiation patterns. In this case, radiation patterns are somewhat asymmetrical. Handheld telephone using PIFA(Planar Inverted F Antenna), instead of monopole antenna, is resonated at frequency 1.52GHz that is available onPCS. In the radiation pattern of this structure, azimuth that electric field intensity is presented below 20dB is 14$^{\circ}$.

  • PDF

Assessment of hazardous substances and workenvironment for cleanrooms of microelectronic industry (전자산업 청정실의 작업환경 및 유해물질농도 평가)

  • Chung, Eun-Kyo;Park, Hyun-Hee;Shin, Jung-Ah;Jang, Jae-Kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.3
    • /
    • pp.280-287
    • /
    • 2009
  • High-tech microelectronics industry is known as one of the most chemical-intensive industries. In Korea, Microelectronics industry occupied 38% of export and 16% of working employees work in microelectronics industry. But, chemical information and health hazards of high-tech microelectronics manufacturing are poorly understood because of rapid development and its penchant for secrecy. We need to investigate on chemical use and exposure control. We Site-visits to 6 high-tech microelectronics manufacturing company which have cleanroom work using over 1,000kg organic solvents (5 semi-conductor chips and its related parts company, 1 liquid crystal display (LCD)). We reviewed their data on chemical use and ventilation system, and measured TVOCs (Total Volatile Organic Compounds) and carbon dioxide concentration. All cleanroom air passed through hepa filters to acheive low particle levels and only 1 cleanroom uses carbon filters to minimize the organic solvents exposures In TVOC screening test, Cleanroom for semi-conductor chips and its related parts company with laminar down flow system (e.g. class 1~100) showed nondetectable level of TVOCs concentration, but Cleanroom for liquid crystal display (LCD) with conventional flow system (e.g. class 1,000~10,000) showed 327 ppm as TVOCs. Acetone concentration in cleanroom for Jig cleaning, LC Injection, Sealing processes were 18.488ppm (n=14), 49.762 ppm (n=15), 8.656 ppm (n=14) as arithmetric mean. Acetone concentration in cleanroom for LCD inspection process was 40ppm (n=55) as geometric mean, where the range was 7.8~128.7ppm and weakly correlated with ventilation rate efficiency(r=0.44, p<0.05). To control organic solvents in cleanrooms, chemical and carbon filters should be installed with hepa filters. Even though their volatile organic compounds concentration was not exceed to occupational exposure limits, considering of entrance limited cleanroom environment, long-term period exposure effects and adverse health effects of cleanroom worker need further reseach.

A Study on Selecting Conditions of Rapid Prototype for Controls of Shape of Micro-hole (미세홀 형상제어를 위한 쾌속조형의 조건선정에 관한 연구)

  • Kim T.H.;Park J.D.;Lee S.S.;Seo S.H.;Jeon E.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.738-742
    • /
    • 2005
  • Rapid Prototype has been used to design and Production of part in a variety of fields ; Car, Electronic products, Aviation, Heavy industry etc. Moreover development of hardware gave rise to use the method of Rapid Prototype more and more at high precision and complicated shapes. Expecially, to be using process of products that shapes of Micro-hole ; Cellular phones, Antennas, Jewels, Semi conductor cases. In case of Micro-shape, precision of the shape turns on various condition ; Laser size, Laminate height, scanning speed, overcure, viscosity of resin, etc. Sometimes breaks out the case that interner hole of shape is blocked by viscosity of resin. The phenomenon has solved easily to reduce viscosity of resin. But, in case of the method brings about the problem that strength goes down in actuality products hardening. This study on verify to change of shape of Micro-hole and makes the semiconductor case which has shape of Micro-hole by using resin of higher viscosity, scanning speed and overcure

  • PDF

Design of Dielectric Detector for FRP Hot Stick in EHV Live line Maintenance

  • Chawporn, Talerngkiat;Sriratana, Witsarut;Trisuwannawat, Thanit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2063-2066
    • /
    • 2005
  • This paper presents an approach to detect the dielectric condition of FRP Hot Stick in EHV high voltage cable whereas shutting down the power system is not necessary. The radio frequency generating method is adopted by transmitting radio wave into the Electrodes. This instrument is small, easy to use and also inexpensive. Furthermore, the impurity level of dirt on high voltage insulator (non-ceramic type) will be analyzed by using the methods based on IEEE Std.978-1984 at 105 kV.DC. /305 mm. and OSHA Regulation 1910.269 Part J - live line tools. The frequency at 10-20 MHz is applied to FRP Hot Stick via Electrode1 and from FRP Hot Stick surface to Electrode 2. After that the results will be evaluated by testing in each condition of FRP Hot Stick, such as dry surface, hot surface, foil winding and conductor inserting. Finally, the watt loss will be examined and compared with the loss from humidity and Carbon tracking. The important components of this system are radio frequency generating unit, frequency stabilizing unit, frequency amplifier, FRP Hot Stick frequency counter, processing unit, and display unit.

  • PDF