• Title/Summary/Keyword: Double-Cantilever Beam

Search Result 119, Processing Time 0.027 seconds

A Study on the Surface Treatment of Prepreg with $Ar^+$ Ion to Increase Mode I Fracture Characteristics of Fiber-Reinforced Composites (섬유강화 적층복합재의 열림모드 파괴특성 향상을 위해 $Ar^+$ 이온도움반응법을 적용한 프리프레그의 표면처리 연구)

  • Lee, Gyeong-Yeop;Ji, Chang-Heon;Yang, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2771-2776
    • /
    • 2000
  • In this work, the effect of surface treatment of prepreg on the mode I fracture behavior was studied. Unidirectional (0-deg) double cantilever beam (DCB) specimens were used for fracture tests. Two groups of DCB specimens were made: the first group was made of prepregs surface-treated by Ar(sup)+ ion beam under oxygen environment and the second group was made of regular prepregs. For both groups, fracture resistance curve (R-curve) was determined and compared to each other, Results showed that resistance behavior of the first group is better than that of the second group. That is, mode I fracture toughness, G(sub)Ic of the first group is 24% larger than that of the second group. SEM examination shows that the improvement of G(sub)Ic is due to the increase of interfacial strength between plies.

A Study on Analysis of Mode I interlaminar Fracture Toughness of Foam Core Sandwich Structures (FOAM CORE SANDWICH 구조재의 Mode I 층간분리 파괴인성의 해석에 관한 연구)

  • Son, Se-Won;Gwon, Dong-An;Hong, Seong-Hui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.81-86
    • /
    • 2000
  • This paper was carried out to investigate the characteristics of interlaminar fracture toughness of foam core sandwich structures under opening loading mode by using the double cantilever beam (DCB) specimens in Carbon/Epoxy and foam core composites. instead of using symmetric geometry of DCB specimen non-symmetric DCB specimen was used to calculate the interlaminar fracture toughness. Three approaches for calculating the energy release rate({{{{ {G }_{IC } }}}}) were compared. Fracture toughness of foam core sandwich structures by autoclave vacuum bagging and hotpress were compared and analyzed. Experiment nonlinear beam bending FEM method were performed. Suggested bonding surface compensation and equivalent area inertia moment was used to calculate the energy release rate in nonlinear analytical results. The conclusions among experimental nonlinear analytical and FEM results was observed. The vacuum bagging method was shown to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}) to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}).

  • PDF

Effect of Ta/Cu Film Stack Structures on the Interfacial Adhesion Energy for Advanced Interconnects (미세 배선 적용을 위한 Ta/Cu 적층 구조에 따른 계면접착에너지 평가 및 분석)

  • Son, Kirak;Kim, Sungtae;Kim, Cheol;Kim, Gahui;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • The quantitative measurement of interfacial adhesion energy (Gc) of multilayer thin films for Cu interconnects was investigated using a double cantilever beam (DCB) and 4-point bending (4-PB) test. In the case of a sample with Ta diffusion barrier applied, all Gc values measured by the DCB and 4-PB tests were higher than 5 J/㎡, which is the minimum criterion for Cu/low-k integration without delamination. However, in the case of the Ta/Cu sample, measured Gc value of the DCB test was lower than 5 J/㎡. All Gc values measured by the 4-PB test were higher than those of the DCB test. Measured Gc values increase with increasing phase angle, that is, 4-PB test higher than DCB test due to increasing plastic energy dissipation and roughness-related shielding effects, which matches well interfacial fracture mechanics theory. As a result of the 4-PB test, Ta/Cu and Cu/Ta interfaces measured Gc values were higher than 5 J/㎡, suggesting that Ta is considered to be applicable as a diffusion barrier and a capping layer for Cu interconnects. The 4-PB test method is recommended for quantitative adhesion energy measurement of the Cu interconnect interface because the thermal stress due to the difference in coefficient of thermal expansion and the delamination due to chemical mechanical polishing have a large effect of the mixing mode including shear stress.

Fracture Behaviour Analysis of the Crack at the Specimen with the Type of Mode I Composed of the Bonded Carbon Fiber Reinforced Plastic (접합된 CFRP로 구성된 Mode I형 시험편 크랙의 파괴 거동 해석)

  • Lee, Jung-Ho;Cho, Jae-Ung;Cheon, Seong-Sik;Kook, Jeong Han
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.356-360
    • /
    • 2015
  • In this paper, the carbon fiber reinforced plastic is processed as the double cantilever beam in order to estimate the fracture behavior of composite and is carried out with the static analysis as the mode I. The specimen sizes are 25 mm, 30 mm, 35 mm and 40 mm. And the material property is used with carbon. As the analysis result of mode I, the adhesive part is detached latest by the small force at the specimen thickness of 25 mm. The largest force is happened at the specimen thickness of 40 mm. The defection of the adhesive interface is shown slowest at the displacement of 9.75 mm at the specimen thickness of 25 mm. And the defection is shown quickest at the displacement of 7.82 mm at the specimen thickness of 40 mm. This defection is due to the fracture of specimen. The result of this study on the defection of the adhesive interface and the reaction force due to this defection is thought to be contributed to the safe structural design of the carbon fiber reinforced plastic.

Measurement of EMC/PCB Interfacial Adhesion Energy of Chip Package Considering Warpage (휨을 고려한 칩 패키지의 EMC/PCB 계면 접합 에너지 측정)

  • Kim, Hyeong Jun;Ahn, Kwang Ho;Oh, Seung Jin;Kim, Do Han;Kim, Jae Sung;Kim, Eun Sook;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.101-105
    • /
    • 2019
  • The adhesion reliability of the epoxy molding compound (EMC) and the printed circuit board (PCB) interface is critical to the quality and lifetime of the chip package since the EMC protects PCB from the external environment during the manufacturing, storage, and shipping processes. It is necessary to measure adhesion energy accurately to ensure product reliability by optimizing the manufacturing process during the development phase. This research deals with the measurement of EMC/PCB interfacial adhesion energy of chip package that has warpage induced by the coefficient of thermal expansion (CTE) mismatch. The double cantilever beam (DCB) test was conducted to measure adhesion energy, and the spring back force of specimens with warpage was compensated to calculate adhesion energy since the DCB test requires flat substrates. The result was verified by comparing the adhesion energy of flat chip packages come from the same manufacturing process.

Convergence Study on Damage of the Bonded Part at TDCB Structure with the Laminate Angle Manufactured with CFRP (CFRP로 제작된 적층각도를 가진 TDCB 구조물에서의 접착부의 파손에 관한 융합 연구)

  • Lee, Dong-Hoon;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.175-180
    • /
    • 2018
  • In this study, CFRP was manufactured with the laminate angle of $45^{\circ}$. The specimen of TDCB bonded with the adhesive for structure was designed by CATIA and the analysis was progressed by using the finite element analysis program of ANSYS. This study model was designed on the basis of British industry and ISO standard and the configuration factor(m) was established with variable according to the angle of model configuration. As the study result of this paper, the maximum deformations at the specimens with the tapered angles of $4^{\circ}$ and $8^{\circ}$ become most as 12.628 mm and least as 12.352mm respectively. Also, the maximum equivalent stresses at the specimens with the tapered angles of $6^{\circ}$ and $8^{\circ}$ become most as 9210.3 MPa and least as 4800.5 MPa respectively. The damage data of TDCB structure with the laminate angle which was manufactured with CFRP could be secured through this study result. As the damage data of TDCB structure bonded with CFRP obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.

A Study on the Influence of Fiber Orientation on the Mode I Interlaminar Fracture Behavior of Carbon/Epoxy Composite materials (탄소섬유/에폭시 복합재료의 Mode I 층간파괴거동에 미치는 섬유배향각의 영향에 관한 연구)

  • 이택순;최영근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.391-401
    • /
    • 1995
  • Several tests of the Double Cantilever Beam(DCB) were carried out for influence of the fiber orientation on the Mode I of the interlaminar fracture behavior in the Carbon/Epoxy composites. The interlaminar fracture toughness of Mode I was estimated based on the energy release rate of Mode I, $G_{I}$. The fracture toughness at crack initiation, $G_{IC}$, increases from type A to type E. The fracture toughness, $G_{IR}$ , is almost constant macroscopically for type A and type E when crack propagates. $G_{IR}$ for types B, C, D increases rapidly at the beginning of the crack growth then it decreases gradually. The fracture surface observation by SEM was also obtained the same results. Consequently the influence of the fiber orientation on the Mode I Interlaminar fracture behavior was made clear.ear.

Dynamic Mixed Mode Crack Propagation Behavior of Structural Bonded Joints

  • Lee, Ouk-Sub;Park, Jae-Chul;Kim, Gyu-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.752-763
    • /
    • 2000
  • The stress field around the dynamically propagating interface crack tip under a remote mixed mode loading condition has been studied with the aid of dynamic photoelastic method. The variation of stress field around the dynamic interface crack tip is photographed by using the Cranz-Shardin type camera having $10^6$ fps rate. The dynamically propagating crack velocities and the shapes of isochromatic fringe loops are characterized for varying mixed load conditions in double cantilever beam (DCB) specimens. The dynamic interface crack tip complex stress intensity factors, $K_1\;and\;K_2$, determined by a hybrid-experimental method are found to increase as the load mixture ratio of y/x (vertical/horizontal) values. Furthermore, it is found that the dynamically propagating interface crack velocities are highly dependent upon the varying mixed mode loading conditions and that the velocities are significantly small compared to those under the mode I impact loading conditions obtained by Shukla (Singh & Shukla, 1996a, b) and Rosakis (Rosakis et al., 1998) in the USA.

  • PDF

Evaluation of Adhesive Properties Using Cohesive Zone Model : Mode I (Cohesive Zone Model을 이용한 접착제 물성평가 : 모드 I)

  • Lee, Chan-Joo;Lee, Sang-Kon;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.474-481
    • /
    • 2009
  • Fracture models and criteria of adhesive with two parameters, namely $G_C$ and ${\sigma}_{max}$, have been developed to describe the fracture process of adhesive joints. Cohesive zone model(CZM) is a representative two parameter failure criteria approach. In CZM, ${\sigma}_{max}$ is a critical, limiting maximum value of the stress in the damage zone ahead of the crack and is assumed to have some physical significance in adhesive failure. Based on CZM and finite element analysis method, the relationship between fracture load and adhesive properties, as $G_{IC)$ and $({\sigma}_{max})_I$, was investigated in adhesively bonded joint tensile test and T-peel test. The two parameters in tensile mode loading were evaluated by using the relationship. The value of $G_{\IC}$ evaluated by proposed method showed close agreement with analytical solution for tapered double cantilever beam(TDCB) test which proposed in an ASTM standard.

Fracture Toughness of Leadframe/EMC Interface (리드프레임/EMC 계면의 파괴 인성치)

  • 이호영;유진
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.6
    • /
    • pp.647-657
    • /
    • 1999
  • Due to the inherently poor adhesion strength of Cu-based leadframe/EMC (Epoxy Molding Compound) interface, popcorn cracking of thin plastic packages frequently occurs during the solder reflow process. In the present work, in order to enhance the adhesion strength of Cu-based leadframe/EMC interface, black-oxide layer was formed on the leadframe surface by chemical oxidation of leadframe, and then oxidized leadframe sheets were molded with EMC and machined to form SDCB (Sandwiched Double-Cantilever Beam) and SBN (Sandwiched Brazil-Nut) specimens. SDCB and SBN specimens were designed to measure the adhesion strength between leadframe and EMC in terms of critical energy-release rate under quasi-Mode I ($G_{IC}$ ) and mixed Mode loading ($G_{C}$ /) conditions, respectively. Results showed that black-oxide treatment of Cu-based leadframe initially introduced pebble-like X$C_2$O crystals with smooth facets on its surface, and after the full growth of $Cu_2$O layer, acicular CuO crystals were formed atop of the $Cu_2$O layer. According to the result of SDCB test, $Cu_2$O crystals on the leadframe surface did not increase ($G_{IC}$), however, acicular CuO crystals on the $Cu_2$O layer enhanced $G_{IC}$ considerably. The main reason for the adhesion improvement seems to be associated with the adhesion of CuO to EMC by mechanical interlocking mechanism. On the other hand, as the Mode II component increased, $G_{C}$ was increased, and when the phase angle was -34$^{\circ}$, crack Kinking into EMC was occured.d.

  • PDF