• Title/Summary/Keyword: Double pendulum

Search Result 45, Processing Time 0.021 seconds

Design of the fuzzy sliding mode controller with double pole inverted pendulum (두개의 pole을 갖는 도립 진자의 퍼지 슬라이딩 모드 제어기 설계)

  • 강항균;한종길;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.188-191
    • /
    • 1996
  • In this paper, we derive dynamic equation of double pole inverted pendulum using Lagrangian equation, and design the fuzzy sliding mode controller. We demonstrate that the designed controller regulates double pole simultaneously regardless of cart position by computer simulation.

  • PDF

Design of Optimal Kinetic Energy Harvester Using Double Pendulum (이중진자를 이용한 최적의 운동에너지 하베스터 설계)

  • Lee, Chibum;Park, Hee Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.619-624
    • /
    • 2015
  • Owing to miniaturization and low-power electronics, mobile, implanted, and wearable devices have become the main trends of electronics during the past decade. There has been much research regarding energy harvesting to achieve battery-free or self-powered devices. The optimal design problems of a double-pendulum kinetic-energy harvester from human motion are studied in this paper. For the given form factor, the weight of the harvester, and the known human excitation, the optimal design problem is solved using a dynamic non-linear double-pendulum model and an electric generator. The average electrical power was selected as the performance index for the given time period. A double-pendulum harvester was proven to be more efficient than a single-pendulum harvester when the appropriate parameters were used.

Posture control of double inverted pendulum with a single actuator (단일 구동부를 갖는 2축 도립진자의 자세제어)

  • Yi, Keon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.577-584
    • /
    • 1999
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link of the target pendulum system is hinged on the plate to free for rotation in the specified range($10^{\cire}$) on the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though it has no actuator in lower hinge. The algorithm to control the inverted pendulum consists of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a nonlinear feedback compensator for the rest of the range. Conventional state feedback control is employed, and the fuzzy controller is responsible for generating the reference joint angle of the upper link for the nonlinear feedback compensator which drives a DC motor to generate an indirect torque to the lower joint. As a result, we can get the upright posture of the proposed pendulum system. Simulations and experiments are conducted to show the validity of the proposed controller.

  • PDF

An implementation of a controller for a double inverted pendulum with a single actuator (단일 구동부를 갖는 2축 도립 진자를 위한 제어기 구현)

  • 남노현;이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.257-260
    • /
    • 1997
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link is hinged on the plate to free for rotation in the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though the proposed inverted pendulum has no actuator in lower hinge. The algorithm to control the inverted pendulum is consisted of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a feedback linearization control for the rest of the range. Concept of the virtual work is employed to drive the linearlized model for the state feedback controller. The feedback linearization controller drives a DC motor with the modified reference joint angle from the fuzzy controller which adjusts a upright posture of a proposed pendulum system. Finally, the experiments are conducted to show the validity of the proposed controller.

  • PDF

Position Control of the Two Links Inverted Pendulum with a Time Varying Load on the Top (상부 시변 부하를 갖는 2축 도립진자의 위치 제어)

  • 이건영
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1147-1153
    • /
    • 1999
  • The attitude control of a double inverted pendulum with a periodical disturbance at link top is dealt in this paper. The proposed system is consisted of the double inverted pendulum and a disturbing link; a triple inverted pendulum with two motors. The lower link is hinged on the plate to free for rotation in the vertical plane. The upper link is connected to the lower link through a DC motor. The DC motor is used to control the posture of the pendulum by adjusting the position of the upper link. The periodical disturbance can be generated by the additional like attached at the end of link 2 through another DC motor, which is the modeling of a posture for a biped supporting with one leg. The motor for the joint simulates the knee joint(or hip joint) and the disturbance for the legs moving in air. The algorithm for controlling the proposed inverted pendulum which is regarded as a virtual double inverted pendulum with a periodic disturbance, is consisted of a state feedback control and a fuzzy logic controller connected in parallel. The fuzzy controller keeps the center of gravity of the biped within the specified range through the nonlinear feedback compensator. The state feedback control takes over the role to maintain a desired posture regardless the disturbance at the link top. Simulations with a mathematical model and experiments are conducted to show the validity of the proposed controller.

  • PDF

The Attitude Control of The Double Inverted Pendulum with Periodic Upper Disturbance (주기적인 상부 외란이 인가되는 2축 도립 진자의 자세 제어)

  • Nam, Row-Hyun;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2309-2311
    • /
    • 1998
  • The attitude control of a double inverted pendulum with a periodical disturbance at link top is dealt in this paper. The proposed system is consisted of the double inverted pendulum and a disturbance link. The lower link is hinged on the plate to free for rotation in the vertical plane. The upper link is connected to the lower link through a DC motor. The DC motor is used to control the posture of the pendulum by adjusting the position of the upper link. The periodical disturbance can be generated by the additional link attached at the end of link 2 through another DC motor, which is the modeling of a posture for a biped supporting with one leg. The motor for the joint simulates the knee joint(or hip joint) and the disturbance for the legs moving in air. The algorithm for controlling a proposed inverted pendulum is consisted of a state feedback control and a fuzzy logic controller. The fuzzy controller keeps the center of gravity of the biped within the specified range through the nonlinear feedback compensator. The state feedback control takes over the role to maintain a desired posture regardless the disturbance at the link top. In these case, the change of the angle and COG of an upper link is compensated with on-line. Simulations with a mathematical model are conducted to show the validity of the proposed controller.

  • PDF

Behaviour of asymmetric building with double variable frequency pendulum isolator

  • Soni, D.P.;Mistry, B.B.;Panchal, V.R.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.61-84
    • /
    • 2010
  • Presented in this paper is the behaviour of asymmetric building isolated by the double variable frequency pendulum isolator (DVFPI). The DVFPI is an adoption of single variable frequency pendulum isolator (VFPI). The geometry and coefficient of friction of top and bottom sliding surfaces can be unequal. The governing equations of motion of the building-isolation system are derived and solved in incremental form. The analysis duly considers the interaction of frictional forces in the two principal directions developed at each sliding surface of the DVFPI. In order to investigate the behaviour of the base isolation using the DVFPI, the coupled lateral-torsional response is obtained under different parametric variations for a set of six far-fault earthquake ground motions and criterion to optimize its performance is proposed. Further, influences of the initial time period, coefficient of friction and frequency variation factors at the two sliding surfaces are investigated. The numerical results of the extensive parametric study help in understanding the torsional behaviour of the structure isolated with the double sliding surfaces as in the DVFPI. It is found that the performance of the DVFPI can be optimized by designing the top sliding surface initially softer and smoother relative to the bottom one.

Modeling of triple concave friction pendulum bearings for seismic isolation of buildings

  • Yurdakul, Muhammet;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.315-334
    • /
    • 2011
  • Seismic isolated building structures are examined in this study. The triple concave friction pendulum (TCFP) is used as a seismic isolation system which is easy to be manufactured and enduring more than traditional seismic isolation systems. In the TCFP, take advantage of weight which pendulum carrying and it's geometry in order to obtain desirable result of seismic isolation systems. These systems offer advantage to buildings which subject to severe earthquake. This is result of damping force of earthquake by means of their internal constructions, which consists of multiple surfaces. As the combinations of surfaces upon which sliding is occurring change, the stiffness and effective friction change accordingly. Additionally, the mentioned the TCFP is modeled as of a series arrangement of the three single concave friction pendulum (SCFP) bearings. A two dimensional- and eight- story of a building with and without isolation system are used in the time history analysis in order to investigate of the effectiveness of the seismic isolation systems on the buildings. Results are compared with each other to emphasize efficiency of the TCFP as a seismic isolation device against the other friction type isolation system like single and double concave surfaces. The values of the acceleration, floor displacement and isolator displacement obtained from the results by using different types of the isolation bearings are compared each other. As a result, the findings show that the TCFP bearings are more effective devices for isolation of the buildings against severe earthquakes.

A Study on the SIIM Fuzzy Quasi-Sliding Mode Control for the Double Inverted Pendulum on a Cart (수레-2축역진자 시스템의 SIIM 퍼지 의사-슬라이딩 모드 제어에 관한 연구)

  • Chai, Chang-Hyun;Kim, Seong-Ro
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.116-121
    • /
    • 2018
  • In this paper, we propose the SIIM fuzzy Quasi-sliding mode controller for the system of a double inverted pendulum on a cart. Since it is difficult to handle this 6th-order system, we decoupled the entire system into three $2^{nd}$ order subsystem, and we designed the SIIM fuzzy Quasi-sliding mode controller for each subsystem, which was easy and did not require the derivation of the equivalent control. The stability of the entire system is guaranteed using Lyapunov function. The validity and robustness of the proposed controller are demonstrated through the computer simulation, and the results are compared with the results of former studies.

Aerodynamic and hydrodynamic force simulation for the dynamics of double-pendulum articulated offshore tower

  • Zaheer, Mohd Moonis;Islam, Nazrul
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.341-354
    • /
    • 2021
  • Articulated towers are one of the class of compliant offshore structures that freely oscillates with wind and waves, as they are designed to have low natural frequency than ocean waves. The present study deals with the dynamic response of a double-pendulum articulated tower under hydrodynamic and aerodynamic loads. The wind field is simulated by two approaches, namely, single-point and multiple-point. Nonlinearities such as instantaneous tower orientation, variable added mass, fluctuating buoyancy, and geometrical nonlinearities are duly considered in the analysis. Hamilton's principle is used to derive the nonlinear equations of motion (EOM). The EOM is solved in the time domain by using the Wilson-θ method. The maximum, minimum, mean, and standard deviation and salient power spectral density functions (PSDF) of deck displacement, bending moment, and central hinge shear are drawn for high and moderate sea states. The outcome of the analyses shows that tower response under multiple-point wind-field simulation results in lower responses when compared to that of single-point simulation.