• Title/Summary/Keyword: Double layer capacitor

Search Result 172, Processing Time 0.032 seconds

Characterization of Electric Double-Layer Capacitor with 0.75M NaI and 0.5 M VOSO4 Electrolyte

  • Chun, Sang-Eun;Yoo, Seung Joon;Boettcher, Shannon W.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 2018
  • We describe a redox-enhanced electric double-layer capacitor (EDLC) that turns the electrolyte in a conventional EDLC into an integral, active component for charge storage-charge is stored both through faradaic reactions with soluble redox-active molecules in the electrolyte, and through the double-layer capacitance in a porous carbon electrode. The mixed-redox electrolyte, composed of vanadium and iodides, was employed to achieve high power density. The electrochemical reaction in a supercapacitor with vanadium and iodide was studied to estimate the charge capacity and energy density of the redox supercapacitor. A redox supercapacitor with a mixed electrolyte composed of 0.75 M NaI and 0.5 M $VOSO_4$ was fabricated and studied. When charged to a potential of 1 V, faradaic charging processes were observed, in addition to the capacitive processes that increased the energy storage capabilities of the supercapacitor. The redox supercapacitor achieved a specific capacity of 13.44 mAh/g and an energy density of 3.81 Wh/kg in a simple Swagelok cell. A control EDLC with 1 M $H_2SO_4$ yielded 7.43 mAh/g and 2.85 Wh/kg. However, the relatively fast self-discharge in the redox-EDLC may be due to the shuttling of the redox couple between the polarized carbon electrodes.

Characterization of Electric Double-Layer Capacitors with Carbon Nanotubes Directly Synthesized on a Copper Plate as a Current Collector (구리 집전판에 직접 합성한 탄소나노튜브의 전기이중층 커패시터 특성)

  • Jung, Dong-Won;Lee, Chang-Soo;Park, Soon;Oh, Eun-Souk
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.419-424
    • /
    • 2011
  • Carbon nanotubes (CNTs) were directly synthesized on a copper (Cu) plate as a current collector by the catalytic thermal vapor deposition method for an electric double-layer capacitor (EDLC) electrode. The diameters of vertically aligned CNTs grown on the Cu plate were 20~30 nm. From cyclic voltammetry (CV) results, the CNTs/Cu electrode showed high specific capacitance with typical profiles of EDLCs. Rectangularshaped CV curves suggested that the CNTs/Cu electrode could be an excellent candidate for an EDLC electrode. The specific capacitances were in a range of 25~75 F/g with a scan rate of 10~100 mV/s and KOH electrolyte concentration 1~6 M, and were maintained up to 1000 charge/discharge cycles due to strong adhesion between the Cu substrate and the CNTs.

High-Performance Amorphous Indium-Gallium Zinc Oxide Thin-Film Transistors with Inorganic/Organic Double Layer Gate Dielectric

  • Lee, Tae-Ho;Kim, Jin-U;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.465-465
    • /
    • 2013
  • Inorganic 물질인 SiO2 dielectric 위에 organic dielectric PVP (4-vinyphenol)를 spin coating으로 올려, inorganic/organic dielectric 형태의 double layer구조로 High-performance amorphous indiumgallium zinc oxide thin-film transistors (IGZO TFT)를 제작하여 보았다. SiO2 dielectric을 buffer layer로 80 nm, PVP는 10Wt% 400 nm로 구성하였으며, 200 nm single SiO2 dielectric과 동일한 수준의 leakage current 특성을 MIM Capacitor 구조를 통해서 확인할 수 있었다. 이 소자의 장점은 용액공정의 도입으로 공정 시간의 단축 및 원가 절감을 이룰 수 있으며, dielectric과 channel 사이의 균일한 interface의 형성으로 interface trap 개선 및 Yield 향상의 장점을 갖는다. 우리는 실험을 통해서 SiO2 buffer layer가 수직 electric field에 의한 leakage current을 제어하고, PVP dielectric은 interface를 개선하는 것을 확인하였다. Vth의 negative shift 및 slope의 향상으로 구동전압이 줄어들고, 균일한 I-V Curve 형성을 통해서 Process Yield의 향상을 확인하였다.

  • PDF

Preparation of Densified ACFs for Electrodes of Electrical Double Layer Capacitor (전기이중층 캐패시터용 고밀도 활성탄소섬유 전극의 제조)

  • 최영옥;김종휘;양갑승
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.91-94
    • /
    • 2003
  • 탄소재료는 높은 전기전도도 및 기계적 강도, 화학적 안정성, 큰 비표면적(1000~3000 $m^2$/g) 등의 특성 때문에 연료전지, 리튬이온 이차전지, 전기이중층 캐패시터(electric double layer capacitor, EDLC)의 전극활물질로 주목받고 있다[1]. 일반적으로 활성탄소섬유는 1000~3000 $m^2$/g의 비표면적을 갖기 때문에 종래의 필름 콘덴서와 세라믹 콘덴서에 비해 비약적인 고용량(체적당 수천 배, Farad급)을 얻을 수 있다. 전기이중층 캐패시터는 수명이 반영구적이며 사용온도의 범위가 넓고 안전하다는 장점을 지니고 있으며 이러한 캐패시터의 성능은 전극으로 사용되는 활성탄소 섬유의 비표면적, 세공의 크기, 구조 및 형태, 표면의 관능기 및 전기 전도도 등의 특성에 크게 좌우된다[1-3]. (중략)

  • PDF

Effect of Conducting Composite on Characteristics of Electric Double Layer Capacitor (전기이중층 캐패시터의 특성에 미치는 혼성 도전재의 영향)

  • Kim, Ick-Jun;Lee, Sun-Young;Do, Chil-Hoon;Moon, Seong-In;Choi, Sung-Ok;Son, Young-Mo;Kim, Kyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1140-1143
    • /
    • 2002
  • This work describes the effect of conducting composite on the characteristics of electric double layer capacitor. The cell, which was fabricated with conducting composite consisted of 50 wt.% of SPB and 50 wt.% of VGCF, exhibits the higher specific capacitance, the lower resistance and the better rate capability than those of the cells fabricated with each single electronic conductor. These enhanced properties could be related with the dense structure of electrode.

  • PDF

Improving Regenerative Break Energy Efficiency and Voltage Regulation Capability of DC Electric Railway by Coordination of VSC and EDLC (전압형 컨버터와 EDLC의 협조 제어에 의한 직류전기철도 회생에너지 이용률 및 전압 제어 능력 향상)

  • Jeon, Go-Woon;Yoo, Hyeong-Jun;Park, Jae-Sae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.176-181
    • /
    • 2015
  • In the DC electric railway system, the effective use of regenerative break energy is an important issue. Since regenerative break energy causes voltage rise or drop in the system, it should be also solved effectively. To solve the problems, applying electric double layer capacitor (EDLC) or voltage source converter (VSC) to the DC electric railway system has been studying. In this paper, the coordination of EDLC and VSC is proposed to solve the problem effectively with its coordinated control algorithm. The proposed method is tested to show its feasibility using Matlab/Simulink.

Electrochemical Properties of Electric Double Layer Capacitor Using Carbon Electrodes (Carbon 전극을 이용한 전기 이중층 캐패시터의 전기화학적 특성)

  • Bang, J.G.;Song, J.G.;Choi, S.A.;Park, G.C.;Gu, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1609-1611
    • /
    • 1997
  • We fabricated five type of electric double layer capacitor(EDLC) with extremely stable activated carbon as a positive and negative electrodes. The electrodes consisted of activated carbon and several different conductor layers on aluminium foil. Cyclic voltammogram of activated carbon electrodes at scan rate 5mV/sec was reversable redox reaction. The discharge capacity of activated carbon-KS 6 composite electrode was higher than that of activated carbon electrode without KS 6.

  • PDF

Design of Coordinated Frequency Control Strategy applied to EDLC and BESSs for Microgrid in the Islanded Mode (독립운전 모드의 마이크로그리드에서 EDLC와 BESS의 주파수 협조제어전략 설계)

  • Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.820-827
    • /
    • 2014
  • Since a microgrid has renewable energy sources, imbalance between power supply and power demand occurs in the islanded mode. In order to solve the imbalance, several energy storage systems (ESSs) such as bettary energy storage system (BESS), EDLC (electric double layer capacitor), flywheel, and SMES (superconducting magnetic energy storage) are generally used. Especially, their electrical characteristics are different. For efficient use of them, a coordinated control scheme is required. In this paper, a coordinated control scheme for using a Lead-acid BESS, a Lithium BESS, and a EDLC is designed to efficient frequency control for a microgrid in the islanded mode. The coordinated frequency control strategy is designed based on their electrical characteristics. The feasibility of the proposed coordinated frequency control strategy is verified through the simulation.

EnhAnced Electric Double Layer Capacitance of New Poly Sodium 4-tyrenesulfonate Intercalated Graphene Oxide Electrodes

  • Jeong, Hye-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.287.2-287.2
    • /
    • 2013
  • We synthesized a new composite of poly sodium 4-styrenesulfonate intercalated graphene oxide for energy storage devices by controlling oxidation time in the synthesis of graphite oxide. Specific capacitance was improved from 20 F/g of the previous composites to 88 F/g of the new composite at the current density of 0.3 A/g. The capacitance retention was 94% after 3000 cycles, indicating that the new composites of high cyclic stability, prominent performance as electric double layer capacitor, and even low resistance could be an excellent carbon based electrode for further energy storage devices.

  • PDF

Electric Properties of Carbon Aerogel for Super Capacitors (카본 에어로겔을 이용한 초고용량 커패시터의 전기적 특성)

  • Han, Jeong-Woo;Lee, Kyeong-Min;Lee, Du-Hee;Lee, Sang-Won;Yoon, Jung-Rag
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.660-666
    • /
    • 2010
  • Carbon aerogels are promising materials as electrodes for electrical double layer capacitors (EDLCs). An optimum process is presented for synthesis of nanoporous carbon aerogels via pyrolyzing resorcinol-formaldehyde (RF) organic aerogels, which could be cost-effectively manufactured from RF wet gels. The major reactions between resorcinol and formaldehyde include an addition reaction to form hydroxymethyl derivatives ($-CH_2OH$), and then a condensation reaction of the hydroxymethyl derivatives ($-CH_2-$)- and methylene ether ($-CH_2OCH_2-$) bridged compounds. The textural properties of carbon aerogels obtained were characterized by nitrogen adsorption/desorption analysis and SEM and TEM. The application of the resultant carbon for electrodes of electric double layers capacitor (EDLC) in organic TEABF4/ACN electrolyte indicated that the ESR, as low as 55 $m{\Omega}$, was smaller than for commercially activated carbons. And EDLC with carbon Aerogel electrodes has an excellent stable more than for commercially activated carbons.