• Title/Summary/Keyword: Double devices

Search Result 442, Processing Time 0.022 seconds

Frequency Vibrational Behavior Analysis of Double-Wall Carbon Nanotube Resonator (이중벽 탄소 나노튜브 공진기의 주파수 변동 특성 분석)

  • Kim, Jin-Tae;Lee, Jun-Ha
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.169-174
    • /
    • 2011
  • For a double-walled carbon nanotube resonator with a short outer nanotube, the free edge of the short outer wall plays an important role in the vibration of the long inner nanotube. For a double-walled carbon nanotube resonator with a short inner nanotube, the short inner nanotube can be considered as a flexible core, thus, the fundamental frequency is influenced by its length. In this paper, we analysis frequency variation in ultrahigh frequency nanomechanical resonators based on double-walled carbon nanotubes with different wall length. This results will widely apply to the realization of frequency devices controlling the length of the inner or outer nanotube.

Investigation of Empty Space in Nanoscale Double Gate (ESDG) MOSFET for High Speed Digital Circuit Applications

  • Kumari, Vandana;Saxena, Manoj;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.127-138
    • /
    • 2013
  • The impact of Empty Space layer in the channel region of a Double Gate (i.e. ESDG) MOSFET has been studied, by monitoring the DC, RF as well as the digital performance of the device using ATLAS 3D device simulator. The influence of temperature variation on different devices, i.e. Double Gate incorporating Empty Space (ESDG), Empty Space in Silicon (ESS), Double Gate (DG) and Bulk MOSFET has also been studied. The electrical performance of scaled ESDG MOSFET shows high immunity against Short Channel Effects (SCEs) and temperature variations. The present work also includes the linearity performance study in terms of $VIP_2$ and $VIP_3$. The proper bias point to get the higher linearity along with the higher transconductance and device gain has also been discussed.

Optimizing Effective Channel Length to Minimize Short Channel Effects in Sub-50 nm Single/Double Gate SOI MOSFETs

  • Sharma, Sudhansh;Kumar, Pawan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.170-177
    • /
    • 2008
  • In the present work a methodology to minimize short channel effects (SCEs) by modulating the effective channel length is proposed to design 25 nm single and double gate-source/drain underlap MOSFETs. The analysis is based on the evaluation of the ratio of effective channel length to natural/ characteristic length. Our results show that for this ratio to be greater than 2, steeper source/drain doping gradients along with wider source/drain roll-off widths will be required for both devices. In order to enhance short channel immunity, the ratio of source/drain roll-off width to lateral straggle should be greater than 2 for a wide range of source/drain doping gradients.

Currant Source GTO Inverter with Double Recovery Path of Commutation Energy by LCD (수동소자에 의한 축적에너지 2중 궤환방식 전류형 GTO 인버터의 입.출력 특성)

  • Kim, Jin-Pyo;Choi, Sang-Won;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2104-2106
    • /
    • 1997
  • In order to develop the three phase GTO CSI with double recovery path of commutation energy by passive devices (LCD), we studied the clamping circuit to protect switching device and energy recovery circuit to recover absorbed energy of capacitor and DC inductor. In this paper, we investigated how DC input power is increased or decreased according to energy recovery path with or not in the three phase GTO current source inverter, we used a induction motor as inverter load, and controlled a induction motor with v/f constant control. Experimental results show that dissipated DC power is decreased in $9{\sim}14%$ by double recovery path. We also confirmed that the characteristics is met as compare simulation results with experimental results according to each frequency.

  • PDF

A Characteristic Analysis of Instantaneous Voltage Resultant Control-Based Double Full-Bridge High Frequency Inverter (순시전압 합성제어형 2중 풀 브릿지 고주파 인버터 특성 해석)

  • Jung, Won-Young;Kim, Sung-Chul;Min, Byung-Jae;Nam, Seung-Sig;Ro, Chae-Cyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.492-494
    • /
    • 1996
  • This paper describes a study on the series resonant inverter using the double full-bridge, and the output voltage of the proposed inverter is controlled by phase shift angle of the outputs of two inverters. These control schemes can be reduce the switching loss and EMI, etc, which the inverter is drived by auto following control of output frequency, because it is impossible for switching devices to be always turned on and off at zero voltage or zero current. Theoretical characteristics of the proposed double inverter circuit are compared with Pspice simulation and experimental results.

  • PDF

Unsteady Electroosmotic Channel Flows with the Nonoverlapped and Overlapped Electric Double Layers

  • Kang, Sang-Mo;Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2250-2264
    • /
    • 2006
  • In micro- and nanoflows, the Boltzmann distribution is valid only when the electric double layers (EDL's) are not overlapped and the ionic distributions establish an equilibrium state. The present study has numerically investigated unsteady two-dimensional fully-developed electroosmotic flows between two parallel flat plates in the nonoverlapped and overlapped EDL cases, without any assumption of the Boltzmann distribution. For the study, two kinds of unsteady flows are considered: one is the impulsive application of a constant electric field and the other is the application of a sinusoidally oscillating electric field. For the numerical simulations, the ionic-species and electric-field equations as well as the continuity and momentum ones are solved. Numerical simulations are successful in accurately predicting unsteady electroosmotic flows and ionic distributions. Results show that the nonoverlapped and overlapped cases are totally different in their basic characteristics. This study would contribute to further understanding unsteady electroosmotic flows in micro- and nanofluidic devices.

A New LED Current Balancing Scheme Using Double-Step-Down DC-DC Converter (이중강압 DC-DC 컨버터를 이용한 새로운 LED 전류 밸런싱 기법)

  • Kim, Kisu;Do, Duc Tuan;Kim, Heung-Geun;Cha, Honnyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1474-1480
    • /
    • 2017
  • This paper presents a new LED current balancing scheme using double-step-down dc-dc converter. With the proposed structure, the two channel LED currents are automatically balanced without using any dedicated control or auxiliary circuit. In addition, switching loss of the switching devices in the proposed LED driver is lower than that of the conventional buck LED driver. To verify the operation of the proposed LED driver, a hardware prototype is built and tested with different number of LED.

A Criteria of Triggering by the Intentional Double Blinks (의도적 이중 눈 깜빡임을 이용한 명령 실행시의 기준에 관한 연구)

  • Lee, Gyeong-Tae;Ban, Yeong-Hwan;Jang, Pil-Sik;Park, Gyeong-Su
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.171-178
    • /
    • 1999
  • Several studies of eye-slaved nonverbal communicators have been performed recently. By integrating the eye and head-position monitoring devices, the present authors had developed an eye-controlled human/computer interface based on the line-of-sight and an intentional blink to invoke commands in the preceeding study. As a successive study, this paper examines the characteristics of performing the intentional double blinks experimentally and proposes the double blinks as an alternative triggering method. The applications may extend to several domains such as rehabilitation and virtual reality system with head mounted display.

  • PDF

High Efficiency Red Phosphorescent Organic Light Emitting Devices Using the Double Dopant System (이중 도핑을 이용한 고효율 적색 인광 유기발광소자)

  • Jang, J.G.;Shin, H.K.;Kim, W.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.351-352
    • /
    • 2008
  • A new high efficient red PhOLED using a host of $Bebq_2$ and double dopants of $(pq)_2$Ir(acac) and SEC-R411 have been fabricated and evaluated. The device doubly doped with $(pq)_2$Ir(acac) and SFC-R411 showed the current efficiency improvement of 22% under a luminance of 10000 cd/$m^2$ in comparision with the device singly doped with SFC-R411. The luminance, current efficiency and central wavelength of the doubly doped device were 9300 cd/$m^2$ at 7V, 11.1 cd/A under a luminance of 10000 cd/$m^2$ and 625 nm, respectively.

  • PDF

Integration of 5-V CMOS and High-Voltage Devices for Display Driver Applications

  • Kim, Jung-Dae;Park, Mun-Yang;Kang, Jin-Yeong;Lee, Sang-Yong;Koo, Jin-Gun;Nam, Kee-Soo
    • ETRI Journal
    • /
    • v.20 no.1
    • /
    • pp.37-45
    • /
    • 1998
  • Reduced surface field lateral double-diffused MOS transistor for the driving circuits of plasma display panel and field emission display in the 120V region have been integrated for the first time into a low-voltage $1.2{\mu}m$ analog CMOS process using p-type bulk silicon. This method of integration provides an excellent way of achieving both high power and low voltage functions on the same chip; it reduces the number of mask layers double-diffused MOS transistor with a drift length of $6.0{\mu}m$ and a breakdown voltage greater than 150V was self-isolated to the low voltage CMOS ICs. The measured specific on-resistance of the lateral double-diffused MOS in $4.8m{\Omega}{\cdot}cm^2$ at a gate voltage of 5V.

  • PDF