• Title/Summary/Keyword: Double activation

Search Result 192, Processing Time 0.03 seconds

Preparation of novolac-type phenol-based activated carbon with a hierarchical pore structure and its electric double-layer capacitor performance

  • Lee, Dayoung;Jung, Jin-Young;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.192-197
    • /
    • 2014
  • A hierarchical pore structured novolac-type phenol based-activated carbon with micropores and mesopores was fabricated. Physical activation using a sacrificial silicon dioxide ($SiO_2$) template and chemical activation using potassium hydroxide (KOH) were employed to prepare these materials. The morphology of the well-developed pore structure was characterized using field-emission scanning electron microscopy. The novolac-type phenol-based activated carbon retained hierarchical pores (micropores and mesopores); it exhibited high Brunauer-Emmett-Teller specific surface areas and hierarchical pore size distributions. The hierarchical pore novolac-type phenol-based activated carbon was used as an electrode in electric double-layer capacitors, and the specific capacitance and the retained capacitance ratio were measured. The specific capacitances and the retained capacitance ratio were enhanced, depending on the $SiO_2$ concentration in the material. This result is attributed to the hierarchical pore structure of the novolac-type phenol-based activated carbon.

HIF-1α-Dependent Gene Expression Program During the Nucleic Acid-Triggered Antiviral Innate Immune Responses

  • Hong, Sun Woo;Yoo, Jae Wook;Kang, Hye Suk;Kim, Soyoun;Lee, Dong-ki
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2009
  • Recent studies suggest a novel role of $HIF-1{\alpha}$ under nonhypoxic conditions, including antibacterial and antiviral innate immune responses. However, the identity of the pathogen-associated molecular pattern which triggers $HIF-1{\alpha}$ activation during the antiviral response remains to be identified. Here, we demonstrate that cellular administration of double-stranded nucleic acids, the molecular mimics of viral genomes, results in the induction of $HIF-1{\alpha}$ protein level as well as the increase in $HIF-1{\alpha}$ target gene expression. Whole-genome DNA microarray analysis revealed that double-stranded nucleic acid treatment triggers induction of a number of hypoxia-inducible genes, and induction of these genes are compromised upon siRNA-mediated $HIF-1{\alpha}$ knock-down. Interestingly, $HIF-1{\alpha}$ knock-down also resulted in down-regulation of a number of genes involved in antiviral innate immune responses. Our study demonstrates that $HIF-1{\alpha}$ activation upon nucleic acid-triggered antiviral innate immune responses plays an important role in regulation of genes involved in not only hypoxic response, but also immune response.

Physico-Chemical Characterization of the Layered Double Hydroxide as Pillar Host Material (Pillar Host Material로써 Layered(Mg/Al) Double Hydroxide의 물리화학적 특성화)

  • 형경우;이용석
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.443-450
    • /
    • 1998
  • Layered double hydroxides(LDHs) [{{{{ {Mg }_{1-x } }}{{{{ {Al }_{x } }}({{{{ {OH}_{2 } }})]ζ+({{{{ {CO }`_{3 } ^{2- } ){ }_{x/2 } }}$.${{{{ { yH}_{2 }O }} wioth variation of layer charge densitywere synthesized by co-precipitation methdo since their charge densities have a very important role to be det-ermined the physicochemical properties of layered materials. The XRD IR and thermal studies of them were discussed and the kinetic study for the decarbonation reaction was also carried out. From the results of XRD analysis we found that the lattice parameter and the unit cell volume were linearly decreased with the amount of Al substituents(x) in the vicinity of x=2∼10${\times}$1/3${\times}$10-1 but they had nearly constant values when the x are far from these vicinit. The activation energies for the decarbonation reaction of x=6.8, 10${\times}$1/3${\times}${{{{ { 10}^{-1 } }} were estimated to be 47.0, 37.6, 39.3 kcal/mol The specific surface areas(90-120 m2/g) of stable hy-drotalcite-type LDHs were dractically decreased with increasing of layer charge density.

  • PDF

Preparations of PAN-based Activated Carbon Nanofiber Web Electrode by Electrostatic Spinning and Their Applications to EDLC (정전방사에 의한 PAN계 활성화 탄소 나노섬유 전극 제조와 EDLC 응용)

  • Kim, Chan;Kim, Jong-Sang;Lee, Wan-Jin;Kim, Hyung-Sup;Edie, Dan D.;Yang, Kap-Seung
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.117-124
    • /
    • 2002
  • Poly(acrylonitrile)(PAN) solutions in dimethylformamide(DMF) were electrospun to prepare webs consisting of 400nm ultra-fine fibers. The webs were oxidatively stabilized, activated by steam and resulted to be activated carbon fibers(ACFs). The specific surface area was $800\~1230 m^2/g$, which showed a trend of a decrease of the surface area with an increase in activation temperature, showing opposite behavior to the other ACFs. The activation energy of the stabilized fibers for the steam activation was determined as 29.2 kJ/mol to be relatively low indicating the easier activation than that of other carbonized fibers. The ACF webs were characterized by pore size and specific surface uea which would be related to the specific capacitance of the electrical double layer capacitor (EDLC). The specific capacitances measured were 27 F/g, 25 F/g, 22 F/g at the respective activation temperature of $700^{circ}C,\;750^{\circ}C\;800^{\circ}C$, showing similar trend with the specific surface area i.e., the higher activation temperature was, the lower specific capacitance resulted.

Fabrication of Activated Porous Carbon Using Polymer Decomposition for Electrical Double-Layer Capacitors (고분자 융해 반응을 이용한 전기 이중층 커패시터용 다공성 활성탄 제조)

  • Sung, Ki-Wook;Shin, Dong-Yo;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.623-630
    • /
    • 2019
  • Because of their excellent stability and highly specific surface area, carbon based materials have received attention as electrode materials of electrical double-layer capacitors(EDLCs). Biomass based carbon materials have been studied for electrode materials of EDLCs; these materials have low capacitance and high-rate performance. We fabricated tofu based porous activated carbon by polymer dissolution reaction and KOH activation. The activated porous carbon(APC-15), which has an optimum condition of 15 wt%, has a high specific surface area($1,296.1m^2\;g^{-1}$), an increased average pore diameter(2.3194 nm), and a high mesopore distribution(32.4 %), as well as increased surface functional groups. In addition, APC has a high specific capacitance($195F\;g^{-1}$) at low current density of $0.1A\;g^{-1}$ and excellent specific capacitance($164F\;g^{-1}$) at high current density of $2.0A\;g^{-1}$. Due to the increased specific surface area, volume ratio of mesopores, and surface functional groups, the specific capacitance and high-rate performance increased. Consequently, the tofu based activated porous carbon can be proposed as an electrode material for high-performance EDLCs.

Dielectric and conductivity properties of defect double Perovskite La1/3TaO3 single crystal (결함 이중 Perovskite La1/3TaO3 단결정의 유전 및 전도특성)

  • Sohn, Jeong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.215-219
    • /
    • 2020
  • After the specimen of A-site defect double Perovskite La1/3TaO3 single crystal was manufactured, the dielectric properties have been studied between the temperature range of 10 and 800 K. Under 500 K, a paraelectric behavior has been shown, and above 550 K, a dielectric anomaly and a thermal history of dielectric constant has been shown. An activation energy by measurement of ac-conductivity has been the largest with 1.83 eV in the areas below 560 K, 0.35 eV in the areas of 560~690 K, and 0.28 eV in the areas of high temperature above 690 K. From these results, it is assumed that in the areas below 500 K, La3+-ion and vacancy-site are arranged in disorder to maintain a paraelectric phase. And in the areas near 560 K with the highest activation energy, a dielectric anomaly is attributes to rearrangement of La3+-ion due to conduction to vacancy-site or jumping.

Dependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response

  • Yu Mi Baek;Soojin Yoon;Yeo Eun Hwang;Dong-Eun Kim
    • IMMUNE NETWORK
    • /
    • v.16 no.4
    • /
    • pp.249-255
    • /
    • 2016
  • Exogenous nucleic acids induce an innate immune response in mammalian host cells through activation of the retinoic acid-inducible gene I (RIG-I). We evaluated RIG-I protein for RNA binding and ATPase stimulation with RNA ligands to investigate the correlation with the extent of immune response through RIG-I activation in cells. RIG-I protein favored blunt-ended, double-stranded RNA (dsRNA) ligands over sticky-ended dsRNA. Moreover, the presence of the 5'-triphosphate (5'-ppp) moiety in dsRNA further enhanced binding affinity to RIG-I. Two structural motifs in RNA, blunt ends in dsRNA and 5'-ppp, stimulated the ATP hydrolysis activity of RIG-I. These structural motifs also strongly induced IFN expression as an innate immune response in cells. Therefore, we suggest that IFN induction through RIG-I activation is mainly determined by structural motifs in dsRNA that increase its affinity for RIG-I protein and stimulate ATPase activity in RIG-I.

STING Negatively Regulates Double-Stranded DNA-Activated JAK1-STAT1 Signaling via SHP-1/2 in B Cells

  • Dong, Guanjun;You, Ming;Ding, Liang;Fan, Hongye;Liu, Fei;Ren, Deshan;Hou, Yayi
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.441-451
    • /
    • 2015
  • Recognition of cytosolic DNA initiates a series of innate immune responses by inducing IFN-I production and subsequent triggering JAK1-STAT1 signaling which plays critical roles in the pathogenesis of infection, inflammation and autoimmune diseases through promoting B cell activation and antibody responses. The stimulator of interferon genes protein (STING) has been demonstrated to be a critical hub of type I IFN induction in cytosolic DNA-sensing pathways. However, it still remains unknown whether cytosolic DNA can directly activate the JAK1-STAT1 signaling or not. And the role of STING is also unclear in this response. In the present study, we found that dsDNA directly triggered the JAK1-STAT1 signaling by inducing phosphorylation of the Lyn kinase. Moreover, this response is not dependent on type I IFN receptors. Interestingly, STING could inhibit dsDNA-triggered activation of JAK1-STAT1 signaling by inducing SHP-1 and SHP-2 phosphorylation. In addition, compared with normal B cells, the expression of STING was significantly lower and the phosphorylation level of JAK1 was significantly higher in B cells from MRL/lpr lupus-prone mice, highlighting the close association between STING low-expression and JAK1-STAT1 signaling activation in B cells in autoimmune diseases. Our data provide a molecular insight into the novel role of STING in dsDNA-mediated inflammatory disorders.

Rheological Properties of Biopolymer Produced by Pseudomonas delafieldii (Pseudomonas delafieldii가 생성하는 다당류의 레올로지 특성)

  • Yoo, Jin-Young;Chung, Dong-Hyo
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.475-480
    • /
    • 1989
  • The extracellular polysaccharide was isolated from the culture of Ps. delafieldii and its rheological property was evaluated. The aqueous solution was extremely viscous and shows pseudoplastic behaviour. The flow behaviour index and apparent viscosity of 1 %solution were 0.09 and 1169 mPa·s. The solution was stable over pH change but did not have thermal stability. The activation energy of flow of 1 % solution was 4.44 kcal/mole. The concentration dependency could be expressed double logarithmically.

  • PDF

Determination of Single Escape and Double Escape Peak Efficiency for a HPGe Detector

  • Park Chang Su;Sun Gwang Min;Choi H.D.
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.523-528
    • /
    • 2003
  • The efficiencies of single escape and double escape peaks were calculated by using Monte Carlo method and compared with measured efficiencies. The efficiency was obtained from the area ratio of escape peak to full energy absorption peak and the full energy absorption peak efficiency. For the escape peak interfered with other $\gamma-ray$ peaks, the net area was obtained by area correction. The GEANT code developed in CERN was used for the Monte Carlo calculation. The calculated efficiencies of the escape peaks agreed with the measurement within $12\%$.