Browse > Article
http://dx.doi.org/10.14348/molcells.2015.2359

STING Negatively Regulates Double-Stranded DNA-Activated JAK1-STAT1 Signaling via SHP-1/2 in B Cells  

Dong, Guanjun (The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University)
You, Ming (The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University)
Ding, Liang (The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University)
Fan, Hongye (State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University)
Liu, Fei (The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University)
Ren, Deshan (The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University)
Hou, Yayi (The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University)
Abstract
Recognition of cytosolic DNA initiates a series of innate immune responses by inducing IFN-I production and subsequent triggering JAK1-STAT1 signaling which plays critical roles in the pathogenesis of infection, inflammation and autoimmune diseases through promoting B cell activation and antibody responses. The stimulator of interferon genes protein (STING) has been demonstrated to be a critical hub of type I IFN induction in cytosolic DNA-sensing pathways. However, it still remains unknown whether cytosolic DNA can directly activate the JAK1-STAT1 signaling or not. And the role of STING is also unclear in this response. In the present study, we found that dsDNA directly triggered the JAK1-STAT1 signaling by inducing phosphorylation of the Lyn kinase. Moreover, this response is not dependent on type I IFN receptors. Interestingly, STING could inhibit dsDNA-triggered activation of JAK1-STAT1 signaling by inducing SHP-1 and SHP-2 phosphorylation. In addition, compared with normal B cells, the expression of STING was significantly lower and the phosphorylation level of JAK1 was significantly higher in B cells from MRL/lpr lupus-prone mice, highlighting the close association between STING low-expression and JAK1-STAT1 signaling activation in B cells in autoimmune diseases. Our data provide a molecular insight into the novel role of STING in dsDNA-mediated inflammatory disorders.
Keywords
B cells; double-stranded DNA; JAK1-STAT1 signaling; SHP-1/2; Stimulator of interferon genes protein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahn, J., Gutman, D., Saijo, S., and Barber, G.N. (2012). STING manifests self DNA-dependent inflammatory disease. Proc. Natl. Acad. Sci. USA 109, 19386-19391.   DOI
2 Ahn, J., Ruiz, P., and Barber, G.N. (2014a). Intrinsic self-DNA triggers inflammatory disease dependent on STING. J. Immunol. 193, 4634-4642.   DOI   ScienceOn
3 Ahn, J., Xia, T., Konno, H., Konno, K., Ruiz, P., and Barber, G.N. (2014b). Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun. 5, 5166.   DOI   ScienceOn
4 Al-Shami, A., and Naccache, P.H. (1999). Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Involvement of Jak2 in the stimulation of phosphatidylinositol 3-kinase. J. Biol. Chem. 274, 5333-5338.   DOI   ScienceOn
5 Alexander, W.S., and Hilton, D.J. (2004). The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu. Rev. Immunol. 22, 503-529.   DOI   ScienceOn
6 Baechler, E.C., Batliwalla, F.M., Karypis, G., Gaffney, P.M., Ortmann, W.A., Espe, K.J., Shark, K.B., Grande, W.J., Hughes, K.M., Kapur, V., et al. (2003). Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 100, 2610-2615.   DOI   ScienceOn
7 Barbalat, R., Ewald, S.E., Mouchess, M.L., and Barton, G.M. (2011). Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol. 29, 185-214.   DOI   ScienceOn
8 Barber, G.N. (2011). Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr. Opin. Immunol. 23, 10-20.   DOI   ScienceOn
9 Baum, R., Sharma, S., Carpenter, S., Li, Q. Z., Busto, P., Fitzgerald, K.A., Marshak-Rothstein, A., and Gravallese, E.M. (2015). Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase iI-deficient mice. J. Immunol. 194, 873-877.   DOI   ScienceOn
10 Becker, A. M., Dao, K.H., Han, B.K., Kornu, R., Lakhanpal, S., Mobley, A.B., Li, Q.Z., Lian, Y., Wu, T., Reimold, A.M., et al. (2013). SLE peripheral blood B cell, T cell and myeloid cell transcriptomes display unique profiles and each subset contributes to the interferon signature. PLoS One 8, e67003.   DOI
11 Bennett, L., Palucka, A.K., Arce, E., Cantrell, V., Borvak, J., Banchereau, J., and Pascual, V. (2003). Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711-723.   DOI   ScienceOn
12 Biron, C.A., Byron, K.S., and Sullivan, J.L. (1989). Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med. 320, 1731-1735.   DOI   ScienceOn
13 Bromberg, J. F., Fan, Z., Brown, C., Mendelsohn, J., and Darnell, J. E., Jr. (1998). Epidermal growth factor-induced growth inhibition requires Stat1 activation. Cell Growth Differ. 9, 505-512.
14 Bunde, T., Kirchner, A., Hoffmeister, B., Habedank, D., Hetzer, R., Cherepnev, G., Proesch, S., Reinke, P., Volk, H.D., Lehmkuhl, H., et al. (2005). Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J. Exp. Med. 201, 1031-1036.   DOI   ScienceOn
15 Chiu, Y.H., Macmillan, J.B., and Chen, Z.J. (2009). RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576-591.   DOI   ScienceOn
16 Burdette, D.L., and Vance, R.E. (2013). STING and the innate immune response to nucleic acids in the cytosol. Nat. Immunol. 14, 19-26.
17 Carlton-Smith, C., and Elliott, R.M. (2012). Viperin, MTAP44, and protein kinase R contribute to the interferon-induced inhibition of Bunyamwera Orthobunyavirus replication. J. Virol. 86, 11548-11557.   DOI
18 Chen, H., Sun, H., You, F., Sun, W., Zhou, X., Chen, L., Yang, J., Wang, Y., Tang, H., Guan, Y., et al. (2011). Activation of STAT6 by STING is critical for antiviral innate immunity. Cell 147, 436-446.   DOI   ScienceOn
19 Christensen, S.R., Shupe, J., Nickerson, K., Kashgarian, M., Flavell, R.A., and Shlomchik, M.J. (2006). Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417-428.   DOI   ScienceOn
20 Cohen, P.L., Caricchio, R., Abraham, V., Camenisch, T.D., Jennette, J.C., Roubey, R.A., Earp, H.S., Matsushima, G., and Reap, E.A. (2002). Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med. 196, 135-140.   DOI
21 Crow, M.K. (2007). Type I interferon in systemic lupus erythematosus. Curr. Top. Microbiol. Immunol. 316, 359-386.
22 Darnell, J.E., Jr. (1997). STATs and gene regulation. Science 277, 1630-1635.   DOI   ScienceOn
23 Fensterl, V., and Sen, G.C. (2011). The ISG56/IFIT1 gene family. J. Interferon Cytokine Res. 31, 71-78.   DOI   ScienceOn
24 Darnell, J.E., Jr., Kerr, I.M., and Stark, G.R. (1994). Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421.   DOI   ScienceOn
25 Dedeoglu, F. (2009). Drug-induced autoimmunity. Curr. Opin. Rheumatol. 21, 547-551.   DOI   ScienceOn
26 Diamond, M.S., and Farzan, M. (2013). The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 13, 46-57.   DOI
27 Frese, S., and Diamond, B. (2011). Structural modification of DNA-- a therapeutic option in SLE? Nat. Rev. Rheumatol. 7, 733-738.   DOI   ScienceOn
28 Gourley, M. and Miller, F.W. (2007). Mechanisms of disease: Environmental factors in the pathogenesis of rheumatic disease. Nat. Clin. Pract. Rheumatol. 3, 172-180.   DOI   ScienceOn
29 Hallen, L.C., Burki, Y., Ebeling, M., Broger, C., Siegrist, F., Oroszlan- Szovik, K., Bohrmann, B., Certa, U., and Foser, S. (2007). Antiproliferative activity of the human IFN-alpha-inducible protein IFI44. J. Interferon Cytokine Res. 27, 675-680.   DOI   ScienceOn
30 Haller, O., Kochs, G., and Weber, F. (2007). Interferon, Mx, and viral countermeasures. Cytokine Growth Factor Rev. 18, 425-433.   DOI   ScienceOn
31 Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D.R., Latz, E., and Fitzgerald, K.A. (2009). AIM2 recognizes cytosolic dsDNA and forms a caspase-1- activating inflammasome with ASC. Nature 458, 514-518.   DOI   ScienceOn
32 Javierre, B.M., Hernando, H., and Ballestar, E. (2011). Environmental triggers and epigenetic deregulation in autoimmune disease. Discov. Med. 12, 535-545.
33 Ishii, K.J., Coban, C., Kato, H., Takahashi, K., Torii, Y., Takeshita, F., Ludwig, H., Sutter, G., Suzuki, K., Hemmi, H., et al. (2006). A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7, 40-48.   DOI   ScienceOn
34 Ishikawa, H., and Barber, G.N. (2008). STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674-678.   DOI   ScienceOn
35 Ishikawa, H., Ma, Z., and Barber, G.N. (2009). STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788-792.   DOI   ScienceOn
36 Justesen, J., Hartmann, R., and Kjeldgaard, N.O. (2000). Gene structure and function of the 2'-5'-oligoadenylate synthetase family. Cell. Mol. Life Sci. 57, 1593-1612.   DOI
37 Klingmuller, U., Lorenz, U., Cantley, L.C., Neel, B.G., and Lodish, H.F. (1995). Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80, 729-738.   DOI   ScienceOn
38 Lau, C.M., Broughton, C., Tabor, A.S., Akira, S., Flavell, R.A., Mamula, M.J., Christensen, S. R., Shlomchik, M.J., Viglianti, G.A., Rifkin, I. R., et al. (2005). RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171-1177.   DOI   ScienceOn
39 Le Bon, A., Schiavoni, G., D'Agostino, G., Gresser, I., Belardelli, F., and Tough, D.F. (2001). Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14, 461-470.   DOI   ScienceOn
40 Lemos, H., Huang, L., Chandler, P.R., Mohamed, E., Souza, G.R., Li, L., Pacholczyk, G., Barber, G.N., Hayakawa, Y., Munn, D.H., et al. (2014). Activation of the STING adaptor attenuates experimental autoimmune encephalitis. J. Immunol. 192, 5571-5578.   DOI   ScienceOn
41 Mathian, A., Gallegos, M., Pascual, V., Banchereau, J., and Koutouzov, S. (2011). Interferon-alpha induces unabated production of short-lived plasma cells in pre-autoimmune lupusprone (NZBxNZW)F1 mice but not in BALB/c mice. Eur. J. Immunol. 41, 863-872.   DOI   ScienceOn
42 Paludan, S.R., and Bowie, A.G. (2013). Immune sensing of DNA. Immunity 38, 870-880.   DOI   ScienceOn
43 Perez-Mercado, A.E., and Vila-Perez, S. (2010). Cytomegalovirus as a trigger for systemic lupus erythematosus. J. Clin. Rheumatol. 16, 335-337.   DOI
44 Platanias, L.C. (2005). Mechanisms of type-I- and type-II-interferonmediated signalling. Nat. Rev. Immunol. 5, 375-386.   DOI   ScienceOn
45 Sarzi-Puttini, P., Atzeni, F., Iaccarino, L., and Doria, A. (2005). Environment and systemic lupus erythematosus: an overview. Autoimmunity 38, 465-472.   DOI   ScienceOn
46 Sfriso, P., Ghirardello, A., Botsios, C., Tonon, M., Zen, M., Bassi, N., Bassetto, F., and Doria, A. (2010). Infections and autoimmunity: the multifaceted relationship. J. Leukoc. Biol. 87, 385-395.   DOI   ScienceOn
47 Sharma, S., Campbell, A.M., Chan, J., Schattgen, S.A., Orlowski, G. M., Nayar, R., Huyler, A. H., Nundel, K., Mohan, C., Berg, L.J., et al. (2015). Suppression of systemic autoimmunity by the innate immune adaptor STING. Proc. Natl. Acad. Sci. USA 112, E710-E717.   DOI   ScienceOn
48 Stetson, D.B., and Medzhitov, R. (2006). Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93-103.   DOI   ScienceOn
49 Shoenfeld, N., Amital, H., and Shoenfeld, Y. (2009). The effect of melanism and vitamin D synthesis on the incidence of autoimmune disease. Nat. Clin. Pract. Rheumatol. 5, 99-105.   DOI   ScienceOn
50 Simon, H.U., Yousefi, S., Dibbert, B., Levi-Schaffer, F., and Blaser, K. (1997). Anti-apoptotic signals of granulocyte-macrophage colony-stimulating factor are transduced via Jak2 tyrosine kinase in eosinophils. Eur. J. Immunol. 27, 3536-3539.   DOI   ScienceOn
51 Sun, W., Li, Y., Chen, L., Chen, H., You, F., Zhou, X., Zhou, Y., Zhai, Z., Chen, D., and Jiang, Z. (2009). ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. USA 106, 8653-8658.   DOI   ScienceOn
52 Swanson, C.L., Wilson, T.J., Strauch, P., Colonna, M., Pelanda, R., and Torres, R.M. (2010). Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response. J. Exp. Med. 207, 1485-1500.   DOI   ScienceOn
53 Takaoka, A., Wang, Z., Choi, M. K., Yanai, H., Negishi, H., Ban, T., Lu, Y., Miyagishi, M., Kodama, T., Honda, K., et al. (2007). DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501-505.   DOI   ScienceOn
54 Tsokos, G.C. (2011). Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110-2121.   DOI   ScienceOn
55 Uccellini, M. B., Busconi, L., Green, N. M., Busto, P., Christensen, S. R., Shlomchik, M. J., Marshak-Rothstein, A., and Viglianti, G.A. (2008). Autoreactive B cells discriminate CpG-rich and CpGpoor DNA and this response is modulated by IFN-alpha. J. Immunol. 181, 5875-5884.   DOI
56 Wang, H., Yang, Y., Sharma, N., Tarasova, N.I., Timofeeva, O.A., Winkler-Pickett, R.T., Tanigawa, S., and Perantoni, A.O. (2010). STAT1 activation regulates proliferation and differentiation of renal progenitors. Cell. Signal. 22, 1717-1726.   DOI   ScienceOn
57 Vachon, V. K., Calderon, B. M., and Conn, G. L. (2015). A novel RNA molecular signature for activation of 2'-5' oligoadenylate synthetase-1. Nucleic Acids Res. 43, 544-552.   DOI   ScienceOn
58 Velazquez, L., Fellous, M., Stark, G. R., and Pellegrini, S. (1992). A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 70, 313-322.   DOI   ScienceOn
59 Vinuesa, C.G., and Goodnow, C.C. (2002). Immunology: DNA drives autoimmunity. Nature 416, 595-598.   DOI   ScienceOn
60 Watson, R.O., Manzanillo, P.S., and Cox, J.S. (2012). Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803-815.   DOI   ScienceOn
61 Wu, J., Sun, L., Chen, X., Du, F., Shi, H., Chen, C., and Chen, Z.J. (2013). Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826-830.   DOI
62 Yan, H., Krishnan, K., Greenlund, A.C., Gupta, S., Lim, J.T., Schreiber, R.D., Schindler, C.W., and Krolewski, J.J. (1996). Phosphorylated interferon-alpha receptor 1 subunit (IFNaR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein. EMBO J. 15, 1064-1074.
63 Yang, P., An, H., Liu, X., Wen, M., Zheng, Y., Rui, Y., and Cao, X. (2010). The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat. Immunol. 11, 487-494.   DOI   ScienceOn
64 Zhong, B., Yang, Y., Li, S., Wang, Y. Y., Li, Y., Diao, F., Lei, C., He, X., Zhang, L., Tien, P., et al. (2008). The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538-550.   DOI   ScienceOn
65 Yin, T., Shen, R., Feng, G.S., and Yang, Y.C. (1997). Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases. J. Biol. Chem. 272, 1032-1037.   DOI   ScienceOn