Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.10.623

Fabrication of Activated Porous Carbon Using Polymer Decomposition for Electrical Double-Layer Capacitors  

Sung, Ki-Wook (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Shin, Dong-Yo (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.29, no.10, 2019 , pp. 623-630 More about this Journal
Abstract
Because of their excellent stability and highly specific surface area, carbon based materials have received attention as electrode materials of electrical double-layer capacitors(EDLCs). Biomass based carbon materials have been studied for electrode materials of EDLCs; these materials have low capacitance and high-rate performance. We fabricated tofu based porous activated carbon by polymer dissolution reaction and KOH activation. The activated porous carbon(APC-15), which has an optimum condition of 15 wt%, has a high specific surface area($1,296.1m^2\;g^{-1}$), an increased average pore diameter(2.3194 nm), and a high mesopore distribution(32.4 %), as well as increased surface functional groups. In addition, APC has a high specific capacitance($195F\;g^{-1}$) at low current density of $0.1A\;g^{-1}$ and excellent specific capacitance($164F\;g^{-1}$) at high current density of $2.0A\;g^{-1}$. Due to the increased specific surface area, volume ratio of mesopores, and surface functional groups, the specific capacitance and high-rate performance increased. Consequently, the tofu based activated porous carbon can be proposed as an electrode material for high-performance EDLCs.
Keywords
electrical double layer capacitor; polymer dissolution; KOH activation; activated porous carbon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Dong, L. Chen, X. Su, Y. Wang and Y. Xia, Angew. Chem., 128, 7600 (2016).   DOI
2 H. Yu, C. Zhu, K. Zhang, Y. Chen, C. Li, P. Gao, P. Yang and Q. Ouyang, J. Mater. Chem. A, 2, 4551 (2014).   DOI
3 H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L. L. Zhang, A. H. MacDonald and R. S. Ruoff, Nat. Commun., 5, 3317 (2014).   DOI
4 H.-G. Jo, D.-Y. Shin and H.-J. Ahn, Korean J. Mater. Res., 29, 167 (2019).   DOI
5 L. Wei and G. Yushin, Nano Energy, 1, 552 (2012).   DOI
6 H.-J. Ahn, J. I. Shon, Y.-S. Kim, H.-S. Shin, W. B. Kim and T.-Y. Seong, Electrochem. Commun., 8, 513 (2006).   DOI
7 D.-Y. Shin, K.-W. Sung and H.-J. Ahn, Appl. Surf. Sci., 478, 499 (2019).   DOI
8 E. Raymundo-Pinero, F. Leroux and F. Beguin, Adv. Mater., 18, 1877 (2006).   DOI
9 H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T.J. Stephenson, C.K. King'ondu, C.M.B. Holt, B.C. Olsen, J.K. Tak, D. Harfield, A.O. Anyia and D. Mitlin, ACS Nano, 6, 5131 (2013).
10 H. Sun, W. He, C. Zong and L. Lu, ACS Appl. Mater. Interfaces., 5, 2261 (2013).   DOI
11 M. Biswal, A. Banerjee, M. Deo and S. Ogale, Energy Environ. Sci., 6, 1249 (2013).   DOI
12 C. Long, X. Chen, L. Jiang, L. Zhi and Z. Fana, Nano Energy, 12, 141 (2015).   DOI
13 D.-Y. Lee, G.-H. An and H.-J. Ahn, J. Alloys Compd., 52, 121 (2017).
14 G.-H. An, D.-Y. Lee and H.-J. Ahn, J. Ind. Eng. Chem., 62, 423 (2018)
15 H. Fan, F. Ran, X. Zhang, H. Song, W. Jing, K. Shen, L. Kong and L. Kong, J. Energy Chem., 23, 684 (2014).   DOI
16 G.-H. An, B-R. Koo and H.-J. Ahn, Phys. Chem. Chem. Phys., 18, 6587 (2016)   DOI
17 M. E. Achaby, Y. Essamlali, N. E. Miri, A. Snik, K. Abdelouahdi, A. Fihri, M. Zahouily and A. Solhy, J. Appl. Polym. Sci., 131, 41042 (2014).
18 D.-Y. Sin, I.-K. Park and H.-J. Ahn, RSC Adv., 6, 58823 (2016).   DOI
19 G.-H. An and H.-J. Ahn, J. Electroanal. Chem., 744, 32 (2015).   DOI