• Title/Summary/Keyword: Double Interaction

Search Result 335, Processing Time 0.028 seconds

An Theoretical Analysis of Electro-osmotic Flow in 2-dimensional slit with Electrical Double Layers in Interaction (전기 이중층의 상호작용을 고려한 2차원 슬릿 내의 전기삼투 유동에 관한 이론적 해석)

  • Lee, Dae-Keun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.497-500
    • /
    • 2006
  • An theoretical analysis on the electro-osmotic flow in a 2-dimensional slit, that is induced by an external electric field acting on the electrical double layers near the slit wall, was performed. Especially, although there were many studies on the interacting electrical double layers, it was found in this study that they have several physical or mathematical fallacies. To resolve these, the general solution on the charge-regulating slit with the height as a parameter was obtained. The results of this work can provide the electrokinetic solution of nanoscale slit with the electrical double layer interaction as well as that of microscale slit without the interaction and can be used as the benchmark of a numerical analysis and the reference of electrokinetic flow path design.

  • PDF

Consideration of Long and Middle Range Interaction on the Calculation of Activities for Binary Polymer Solutions

  • Lee, Seung-Seok;Bae, Young-Chan;Sun, Yang-Kook;Kim, Jae-Jun
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.320-328
    • /
    • 2008
  • We established a thermodynamic framework of group contribution method based on modified double lattice (MDL) model. The proposed model included the long-range interaction contribution caused by the Coulomb electrostatic forces, the middle-range interaction contribution from the indirect effects of the charge interactions and the short-range interaction from modified double lattice model. The group contribution method explained the combinatorial energy contribution responsible for the revised Flory-Huggins entropy of mixing, the van der Waals energy contribution from dispersion, the polar force, and the specific energy contribution from hydrogen bonding. We showed the solvent activities of various polymer solution systems in comparison with theoretical predictions based on experimental data. The proposed model gave a very good agreement with the experimental data.

Enhancement Thermal Conductivity of Nanofluids with Electric Double Layer (EDL) (전기이중층에 의한 나노유체의 열전달율 향상)

  • Jung, Jung-Yeul;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2160-2164
    • /
    • 2007
  • In this study, the mechanism of enhanced thermal conductivity is elucidated on the bases of both electric double layer (EDL) and kinetic theory. A novel expression for the thermal conductivity of nanofluids is proposed and verified by applying to $Al_2O_3$ nanofluids with regard to various temperatures, volume fractions and particle sizes. In dilute nanofluids, the effects of Brownian motion and particle interaction on enhancing the thermal conductivity of nanofluids are quite comparable while the effect of particle interaction due to EDL is more prominent in dense nanofluids. The model presented in this paper shows that particle interaction due to the electrical double layer is the most responsible for the enhancement of thermal conductivity of nanofluids.

  • PDF

Responses of Submerged Double Hull Pontoon/Membrane Breakwater

  • Kee S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.19-28
    • /
    • 2005
  • The present paper outlines the numerical investigation of the incident wave interactions with fully submerged and floating dual double hull pontoon/vertical porous membrane breakwaters. Two dimensional five fluid-domains hydro-elastic formulation was carried out in the context of linear wave body interaction theory to study the wave interaction with the double hull of pontoon-membranes. The submerged circular pontoon is consisted of double hulls, which is filled with water in the void space between the outer structure and inner solid buoyant structure. Hydrodynamic characteristics of the proposed system with dual floating double-hull-pontoons filled with water have been studied numerically for the various incident waves. This study is a beginning stage research for the dual double hull porous pontoons/vertical porous membranes breakwaters which is ideally designed in order to suppress significantly the transmitted and reflected waves simultaneously.

Numerical study of Double Hydrofoil motions for thrust and propulsive efficiency (추력 및 효율 향상을 위한 Double Hydrofoil 움직임에 대한 수치해석 연구)

  • Kim, Sue-Jin;Han, Jun-Hee;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.59-70
    • /
    • 2014
  • The motion of birds and insects have been studied and applied to MAV(Micro Air Vehicle) and AUV(Autonomous Underwater Vehicle). Most of AUV research is focused on shape and motion of single hydrofoil. However, double hydrofoil system is mostly used in real physics. This system shows completely different hydrodynamic characteristic to single hydrofoil because of wake interaction. The goal of this study is define the trajectory of wake interaction in double hydrofoil system. Moreover, trust and efficiency of various combined motion will be demonstrated. Symmetry airfoil is used for analysis an hydrodynamic characteristic. Forward wing's plunging and pitching motion is fixed, hide wing's Heaving ratio, Pitch phase shift from forward plunging and Heaving shift is changed. This study provide necessary basic data of motion optimization for double hydrofoil system.

Distinctiveness of inner interactions in gamers' game activities : Gamers between being decadent and enjoyment (게이머의 게임 활동에서 나타나는 내적 상호작용의 특수성 : 타락(墮落)과 유락(遊樂) 사이의 게이머)

  • Ok, Seon Young
    • Journal of Korea Game Society
    • /
    • v.19 no.6
    • /
    • pp.117-132
    • /
    • 2019
  • This paper deals with the distinctiveness of interaction. The interaction discussed here is one that must be understood in philosophical context. The following is the procedure of this paper. First, reviewing the external properties of interaction, second, understanding the internal properties of interaction, third, grasping gamers' double-sidedness, fourth, the interpretation of meaning of gamers' interaction. In conclusion, The distinctiveness of interaction is an playful and ontological energy that turns the usual point of view on the basis of the double situation of the gamers.

Electric double layers interactions under condition of variable dielectric permittivity

  • Payam, Amir Farrokh;Fathipour, Morteza
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.157-171
    • /
    • 2010
  • In this paper, a theoretical method has been developed for the electric double layer interaction under condition of the variable dielectric permittivity of water. Using Poisson-Boltzmann equation (PBE), for one plate and two plates having similar or dissimilar constant charge or constant potential, we have investigated the electric double layer potential, its gradient and the disjoining pressure as well as the effect of variation of dielectric permittivity on these parameters. It has been assumed that plates are separated by a specific distance and contain a liquid solution in between. It is shown that reduction of the dielectric permittivity near the interfaces results in compression of electric double layers and affects the potential and its gradient which leads to a decreased electrostatic repulsion. In addition, it is shown that variation of dielectric permittivity in the case of higher electrolyte concentration, leads to a greater change in potential distribution between two plates.

Study of Cavitation Instabilities in Double-Suction Centrifugal Pump

  • Hatano, Shinya;Kang, Donghyuk;Kagawa, Shusaku;Nohmi, Motohiko;Yokota, Kazuhiko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.3
    • /
    • pp.94-100
    • /
    • 2014
  • In double-suction centrifugal pumps, it was found that cavitation instabilities occur with vibration and a periodic chugging noise. The present study attempts to identify cavitation instabilities in the double-suction centrifugal pump by the experiment and Computational Fluid Dynamics (CFD). Cavitation instabilities in the tested pump were classified into three types of instabilities. The first one, in a range of cavitation number higher than breakdown cavitation number, is cavitation surge with a violent pressure oscillation. The second one, in a range of cavitation number higher than the cavitation number of cavitation surge, is considered to be rotating cavitation and causes the pressure oscillation due to the interaction of rotating cavitation with the impeller. Last one, in a range of cavitation number higher than the cavitation number of rotating cavitation, is considered to be a surge type instability.

더블 전자 층 간의 상호관계와 드래그 현상

  • Lee, Ga-Yeong
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.19-28
    • /
    • 2018
  • Coulomb drag is an effective probe into interlayer interaction between two electron systems in close proximity. For example, it can be a measure of momentum, phonon, or energy transfer between the two systems. The most exotic phenomenon would be when bosonic indirect excitons (electron-hole pairs) are formed in double layer systems where electrons and holes are populated in the opposite layers. In this review, we present various drag phenomena observed in different double layer electron systems, e.g. GaAs/AlGaAs heterostructures and two-dimensional material based heterostructures. In particular, we address the different behavior of Coulomb drag depending on its origin such as momentum or energy transfer between the two layers and exciton condensation. We also discuss why it is difficult to achieve electron-hole pairs in double layer electron systems in equilibrium.

Double Exchange Interaction in Colossal Magnetoresistance Compounds: $La_{1-\chi}X{\chi}MnO_3$ (초거대 자기저항 $La_{1-x}X_xMnO_3$ 화합물에서의 이중 교환 상호작용)

  • 유운종;이재동;민병일
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.55-67
    • /
    • 1997
  • Double exchange interaction leads to the ferromagnetism by the direct coupling between conduction electrons and magnetic ions. The most intriguing feature of double exchange is the explicit connection of the conductivity with the magnetism, which has drawn much interest in relation to the colossal magnetoresistance (CMR) recently observed in manganese oxide compounds. In this review, we explain the basic physics of double exchange and examine the classical discussions.

  • PDF