Consideration of Long and Middle Range Interaction on the Calculation of Activities for Binary Polymer Solutions

  • Lee, Seung-Seok (Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University) ;
  • Bae, Young-Chan (Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University) ;
  • Sun, Yang-Kook (Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University) ;
  • Kim, Jae-Jun (College of Architecture, Hanyang University)
  • Published : 2008.06.30

Abstract

We established a thermodynamic framework of group contribution method based on modified double lattice (MDL) model. The proposed model included the long-range interaction contribution caused by the Coulomb electrostatic forces, the middle-range interaction contribution from the indirect effects of the charge interactions and the short-range interaction from modified double lattice model. The group contribution method explained the combinatorial energy contribution responsible for the revised Flory-Huggins entropy of mixing, the van der Waals energy contribution from dispersion, the polar force, and the specific energy contribution from hydrogen bonding. We showed the solvent activities of various polymer solution systems in comparison with theoretical predictions based on experimental data. The proposed model gave a very good agreement with the experimental data.

Keywords

References

  1. J. M. Prausnitz, R. N. Lichtenthaler, and E. G. Azevedo, Molecular Thermodynamics of Fluid Phase Equilibria, 3rd edn., Prentice Hall PTR, Upper Saddle River, New Jersey, 1999
  2. I. Langmuir, Third Colloid Symposium Monograph, The Chemical Catalog Company Inc., New York, 1925
  3. D. S. Abrams and J. M. Prausnitz, AlchE J., 21, 116 (1975) https://doi.org/10.1002/aic.690210115
  4. A. Fredenslund, J. Gmehling, M. L. Michelsen, P. Rasmussen, and J. M. Prausnitz, Ind. Eng. Chem. Process Des. Dev., 16, 450 (1977) https://doi.org/10.1021/i260064a004
  5. T. Oishi and J. M. Prausnitz, Ind. Eng. Chem. Process Des. Dev., 17, 333 (1978) https://doi.org/10.1021/i260067a021
  6. J. Holten-Andersen, A. Fredenslund, P. Rasmussen, and G. Carvoli, Fluid Phase Equilibria, 29, 357 (1986) https://doi.org/10.1016/0378-3812(86)85035-X
  7. J. Holten-Andersen, P. Rasmussen, and A. Fredenslund, Ind. Eng. Chem. Res., 26, 1382, (1987) https://doi.org/10.1021/ie00067a019
  8. F. Chen, A. Fredenslund, and P. Rasmussen, Ind. Eng. Chem. Res., 29, 875(1990) https://doi.org/10.1021/ie00101a024
  9. H. S. Elbro, A. Fredenslund, and P. Rasmussen, Macromolecules, 23, 4707 (1990) https://doi.org/10.1021/ma00223a031
  10. G. Kontogeogis, A. Fredenslund, and D. P. Tassios, Ind. Eng. Chem. Res., 32, 362 (1993) https://doi.org/10.1021/ie00014a013
  11. G. Bogdanic, A. Fredenslund, and D. P. Tassios, Ind. Eng. Chem. Res., 33, 1331 (1994) https://doi.org/10.1021/ie00029a032
  12. P. J. Flory, Disc. Faraday Soc., 49, 7 (1970) https://doi.org/10.1039/df9704900007
  13. M. L. Huggins, J. Phys. Chem., 46, 151 (1942) https://doi.org/10.1021/j150415a018
  14. K. F. Freed, J. Phys. A. Math. Gen., 18, 871 (1985) https://doi.org/10.1088/0305-4470/18/5/019
  15. M. G. Bawendi, K. F. Freed, and U. Mohanty, J. Chem. Phys., 87, 5534 (1988) https://doi.org/10.1063/1.453638
  16. Y. Hu, S. Lambert, D. S. Soane, and J. M. Prausnitz, Macromolecules, 24, 4356 (1991) https://doi.org/10.1021/ma00015a017
  17. J. S. Oh and Y. C. Bae, Polymer, 39, 1149 (1998) https://doi.org/10.1016/S0032-3861(97)00305-4
  18. Y. Hu, H. Zhou, H. Liu, D. T. Wu, and J. M. Prausnitz, Fluid Phase Equilibira, 134, 43 (1998)
  19. P. Debye and HYckel, Z. Phys., 24, 185 (1923)
  20. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworth, 1965
  21. E. Glueckauf, Trans. Faraday Soc., 51, 1235 (1955) https://doi.org/10.1039/tf9555101235
  22. R. H. Stokes, Trans. Faraday Soc., 44, 295 (1948) https://doi.org/10.1039/tf9484400295
  23. R. H. Stokes and R. A. Robinson, J. Solution Chem., 2, 173 (1973) https://doi.org/10.1007/BF00651972
  24. L. Blum, Mol. Phys., 30, 1529 (1975) https://doi.org/10.1080/00268977500103051
  25. R. J. Baxter, in Physical Chemistry, D. Henderson, Ed., Academic, New York, 1971, Vol. VIIIA
  26. H. Planche and H. J. Renon, Phys. Chem., 85, 3924 (1981) https://doi.org/10.1021/j150625a044
  27. K. S. Pitzer, J. Phys. Chem., 77, 268 (1973) https://doi.org/10.1021/j100621a026
  28. K. S. Pitzer and G. Mayorga, J. Phys. Chem., 77, 2300 (1973) https://doi.org/10.1021/j100638a009
  29. B. Mock, B. Evans, and C. C. Chen, AIChE J., 32, 1655 (1986) https://doi.org/10.1002/aic.690321009
  30. B. Sander, A. Fredenslund, and P. Rasmussen, Chem. Eng. Sci., 41, 1171 (1986) https://doi.org/10.1016/0009-2509(86)87090-7
  31. E. A. Macedo, P. Skovborg, and P. Rasmussen, Chem. Eng. Sci., 45, 875 (1990) https://doi.org/10.1016/0009-2509(90)85009-3
  32. J. Li, H. M. Polka, and J. Gmehling, Fluid Phase Equilibria, 94, 89 (1994) https://doi.org/10.1016/0378-3812(94)87052-7
  33. J. Li, H. M. Polka, and J. Gmehling, Fluid Phase Equilibria, 94, 115 (1994) https://doi.org/10.1016/0378-3812(94)87053-5
  34. R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics, Cambridge University Press, Cambridge, 1949, Chap. 9
  35. J. T. Hinatsu, M. Mizuhata, and H. Takenaka, J. Electrochem. Soc., 141, 1493 (1994) https://doi.org/10.1149/1.2054951
  36. A. Z. Panagiotopolous, N. Quirke, M. Stapleton, and D. J. Tildesley, Molecular Physics, 63, 527 (1988) https://doi.org/10.1080/00268978800100361
  37. A. F. M. Barton, CRC Handbook of Solubility Parameter and Other Cohesion Parameters, 2nd edn., CRC Press, Boca Raton Ann Arbor Boston, 1991
  38. H. Wen, H. S. Elbro, and P. Alessi, Polymer Solution Data Collection, Part 1; Vapor-Liquid Equlibrium, Solvent Activity Coefficients at Infinite Dilution, DECHEMA, Frankfurt, 1992
  39. D. Patterson, Macromolecules, 2, 672 (1969) https://doi.org/10.1021/ma60012a021