• Title/Summary/Keyword: Double Flash System

Search Result 18, Processing Time 0.028 seconds

A Study of Geothermal Power Production with Flashed Steam System (플래쉬 시스템에 의한 지열 발전 성능해석)

  • Lee, Se-Kyoun;Woo, Joung-Son
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.1-7
    • /
    • 2008
  • Flashed steam system is one of the important geothermal power production methods. In this paper, optimum operations and performances of single and double flash systems are presented. It is shown that double flash system can produce about 26.5% more power than single flash system. Temperature of geothermal water($T_R$) is the most important parameter in the geothermal system. Optimum single and double flash temperatures and net power produced with these optimum conditions are expressed as a function of $T_R$ in this study. Thus net power output from geothermal resources can be estimated with the results of this work. Condenser Temperature($T_{con}$) is also important and the net power production can be shown as a function of ($T_R-T_{con}$. Volume flow rate per unit power is also to be considered as the condenser temperature decreases.

Characteristics of Thermodynamic Performance of Organic Flash Cycle (OFC) with Double Expansion (이중 팽창을 채용한 유기 플래시 사이클(OFC)의 열역학적 성능 특성)

  • KIM, KYOUNG HOON;HAN, CHUL HO;JUNG, YOUNG GUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.483-489
    • /
    • 2018
  • Recently proposed organic flash cycle (OFC) was shown to potentially improve power generation using low grade heat source. In this paper, a thermodynamic performance is carried out for a modified OFC employed double expansions. Effects of the selection of working fluid and the important system parameters such as the temperatures in flash evaporators on the system performance were extensively investigated. Results showed that the system performances are strongly influenced with the system parameters and selection of the working fluid, and the power generation can be increased compared to the basic OFC.

Algorithm and Design of Double-base Log Encoder for Flash A/D Converters

  • Son, Nguyen-Minh;Kim, In-Soo;Choi, Jae-Ha;Kim, Jong-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.4
    • /
    • pp.289-293
    • /
    • 2009
  • This study proposes a novel double-base log encoder (DBLE) for flash Analog-to-Digital converters (ADCs). Analog inputs of flash ADCs are represented in logarithmic number systems with bases of 2 and 3 at the outputs of DBLE. A look up table stores the sets of exponents of base 2 and 3 values. This algorithm improves the performance of a DSP (Digital Signal Processor) system that takes outputs of a flash ADC, since the double-base log number representation does multiplication operation easily within negligible error range in ADC. We have designed and implemented 6 bits DBLE implemented with ROM (Read-Only Memory) architecture in a $0.18\;{\mu}m$ CMOS technology. The power consumption and speed of DBLE are better than the FAT tree and binary ROM encoders at the cost of more chip area. The DBLE can be implemented into SoC architecture with DSP to improve the processing speed.

  • PDF

New Multiplier for a Double-Base Number System Linked to a Flash ADC

  • Nguyen, Minh-Son;Kim, In-Soo;Choi, Kyu-Sun;Lim, Jae-Hyun;Choi, Won-Ho;Kim, Jong-Soo
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.256-259
    • /
    • 2012
  • The double-base number system has been used in digital signal processing systems for over a decade because of its fast inner product operation and low hardware complexity. This letter proposes an innovative multiplier architecture using hybrid operands. The multiplier can easily be linked to flash analog-to-digital converters or digital systems through a double-base number encoder (DBNE) for realtime signal processing. The design of the DBNE and the multiplier enable faster digital signal processing and require less hardware resources compared to the binary processing method.

A New Flash A/D Converter Adopting Double Base Number System (2개의 밑수를 이용한 Flash A/D 변환기)

  • Kim, Jong-Soo;Kim, Man-Ho;Jang, Eun-Hwa
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.54-61
    • /
    • 2008
  • This paper presents a new TIQ based CMOS flash 6-bit ADC to process digital signal in real time. In order to improve the conversion speed of ADC by designing new logic or layout of ADC circuits, a new design method is proposed in encoding logic circuits. The proposed encoding circuits convert analog input into digitally encoded double base number system(DBNS), which uses two bases unlike the normal binary representation scheme. The DBNS adopts binary and ternary radix to enhance digital arithmetic processing capability. In the DBNS, the addition and multiplication can be processed with just shift operations only. Finding near canonical representation is the most important work in general DBNS. But the main disadvantage of DBNS representation in ADC is the fan-in problem. Thus, an equal distribution algorithm is developed to solve the fan-in problem after assignment the prime numbers first. The conversion speed of simulation result was 1.6 GSPS, at 1.8V power with the Magna $0.18{\mu}m$ CMOS process, and the maximum power consumption was 38.71mW.

  • PDF

Constraint Algorithm in Double-Base Number System for High Speed A/D Converters

  • Nguyen, Minh Son;Kim, Man-Ho;Kim, Jong-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.430-435
    • /
    • 2008
  • In the paper, an algorithm called a Constraint algorithm is proposed to solve the fan-in problem occurred in ADC encoding circuits. The Flash ADC architecture uses a double-base number system (DBNS). The DBNS has known to represent the multi-dimensional logarithmic number system (MDLNS) used for implementing the multiplier accumulator architecture of FIR filter in digital signal processing (DSP) applications. The authors use the DBNS with the base 2 and 3 to represent binary output of ADC. A symmetric map is analyzed first, and then asymmetric map is followed to provide addition read DBNS to DSP circuitry. The simulation results are shown for the Double-Base Integer Encoder (DBIE) of the 6-bit ADC to demonstrate an effectiveness of the Constraint algorithm, using $0.18{\mu}\;m$ CMOS technology. The DBIE’s processing speed of the ADC is fast compared to the FAT tree encoder circuit by 0.95 GHz.

A New Multiplication Architecture for DSP Applications

  • Son, Nguyen-Minh;Kim, Jong-Soo;Choi, Jae-Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.139-144
    • /
    • 2011
  • The modern digital logic technology does not yet satisfy the speed requirements of real-time DSP circuits due to synchronized operation of multiplication and accumulation. This operation degrades DSP performance. Therefore, the double-base number system (DBNS) has emerged in DSP system as an alternative methodology because of fast multiplication and hardware simplicity. In this paper, authors propose a novel multiplication architecture. One operand is an output of a flash analog-to-digital converter (ADC) in DBNS format, while the other operand is a coefficient in the IEEE standard floating-point number format. The DBNS digital output from ADC is produced through a new double base number encoder (DBNE). The multiplied output is in the format of the IEEE standard floating-point number (FPNS). The proposed circuits process multiplication and conversion together. Compared to a typical multiplier that uses the FPNS, the proposed multiplier also consumes 45% less gates, and 44% faster than the FPNS multiplier on Spartan-3 FPGA board. The design is verified with FIR filter applications.

Application of Constraint Algorithm for High Speed A/D Converters

  • Nguyen, Minh Son;Yeo, Soo-A;Kim, Man-Ho;Kim, Jong-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.224-229
    • /
    • 2008
  • In the paper, a new Constraint algorithm is proposed to solve the fan-in problem occurred in the encoding circuitry of an ADC. The Flash ADC architecture uses a Double-Base Number System(DBNS). The DBNS has been known to represent the Multidimensional Logarithmic Number System (MDLNS) used for implementing the multiplier accumulator architecture of FIR filter in Digital Signal Processing (DSP) applications. The authors use the DBNS with the base 2 and 3 in designing ADC encoder circuits, which is called as Double Base Integer Encoder(DBIE). A symmetric map is analyzed first, and then asymmetric map is followed to provide addition ready DBNS for DSP circuitry. The simulation results of the DBIE circuits in 6-bit and 8-bit ADC show the effectiveness of the Constraint algorithm with $0.18{\mu}m$ CMOS technology. The DBIE yields faster processing speed compared to the speed of Fat Tree Encoder (FAT) circuits by 17% at more power consumption by 39%.

  • PDF

A Policy of Page Management Using Double Cache for NAND Flash Memory File System (NAND 플래시 메모리 파일 시스템을 위한 더블 캐시를 활용한 페이지 관리 정책)

  • Park, Myung-Kyu;Kim, Sung-Jo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.5
    • /
    • pp.412-421
    • /
    • 2009
  • Due to the physical characteristics of NAND flash memory, overwrite operations are not permitted at the same location, and therefore erase operations are required prior to rewriting. These extra operations cause performance degradation of NAND flash memory file system. Since it also has an upper limit to the number of erase operations for a specific location, frequent erases should reduce the lifetime of NAND flash memory. These problems can be resolved by delaying write operations in order to improve I/O performance: however, it will lower the cache hit ratio. This paper proposes a policy of page management using double cache for NAND flash memory file system. Double cache consists of Real cache and Ghost cache to analyze page reference patterns. This policy attempts to delay write operations in Ghost cache to maintain the hit ratio in Real cache. It can also improve write performance by reducing the search time for dirty pages, since Ghost cache consists of Dirty and Clean list. We find that the hit ratio and I/O performance of our policy are improved by 20.57% and 20.59% in average, respectively, when comparing them with the existing policies. The number of write operations is also reduced by 30.75% in average, compared with of the existing policies.

NAND Flash memory 소자 기술 동향

  • Lee, Hui-Yeol;Park, Seong-Gye
    • The Magazine of the IEIE
    • /
    • v.42 no.7
    • /
    • pp.26-38
    • /
    • 2015
  • 고집적화를 위한 Floating Gate NAND 개발과정에서 몇 차례 기술적 한계상황에 직면하였었지만, Air-Gap, Double patterning, Multi-level Cell, Error Correction Code과 같은 breakthrough idea 을 활용하여 1Xnm까지 성공적인 scale-down 을 하였고 10nm 까지도 바라보고 있지만, 10nm 미만으로는 적절한 방안을 찾지 못한 상황입니다. CTD 의 3D NAND Flash는 Aspect Ratio, Poly channel의 intrinsic 특성, Data 보존 능력 등 해결 해야 할 issue 들이 남아 있지만, F.G Flash 의 지난 20년간 Lesson-learn 과 Band engineering, Channel Si, PUC 의 요소기술 개발 및 System algorithm 개발, QLC 개발 등을 통하여 F.G Flash를 넘어 지속적인 Cost-down 이 가능할 것입니다.