• 제목/요약/키워드: Dose-rate effects

검색결과 961건 처리시간 0.03초

DOSE AND DOSE RATE EFFECTS OF IRRADIATION ON BLOOD COUNT AND CYTOKINE LEVEL IN BALB/c MICE

  • Son, Yeonghoon;Jung, Dong Hyuk;Kim, Sung Dae;Lee, Chang Geun;Yang, Kwangmo;Kim, Joong Sun
    • Journal of Radiation Protection and Research
    • /
    • 제38권4호
    • /
    • pp.179-184
    • /
    • 2013
  • The biological effects of radiation are dependent on the dose rate and dose of radiation. In this study, effects of dose and dose rate using whole body radiation on plasma cytokines and blood count from male BALB/c mice were evaluated. We examined the blood and cytokine changes in mice exposed to a low (3.49m Gy $h^{-1}$) and high (2.6 Gy $min^{-1}$) dose rate of radiation at a total dose of 0.5 and 2 Gy, respectively. Blood from mice exposed to radiation were evaluated using cytokine assays and complete blood count. Peripheral lymphocytes and neutrophils decreased in a dose dependent manner following high dose rate radiation. The peripheral lymphocytes population remained unchanged following low dose rate radiation; however, the neutrophils population increased after radiation. The sera from these mice exhibited elevated levels of flt3 ligand and granulocyte-colony-stimulating factor (G-CSF), after high/low dose rate radiation. These results suggest that low-dose-rate radiation does not induce blood damage, which was unlike high-dose-rate radiation treatment; low-dose-rate radiation exposure activated the hematopoiesis through the increase of flt3 ligand and G-CSF.

CMOS 소자에서 과도방사선펄스에 의한 Dose-Rate Latchup 모의실험 (Simulation for Dose-Rate Latchup by Transient Radiation Pulse in CMOS Device)

  • 이현진;이남호;황영관
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.1185-1186
    • /
    • 2008
  • A nuclear explosion emits a transient radiation pulse like gamma rays. Gamma rays have a high energy and cause unexpected effects in semiconductor devices. These effects are mainly referred to dose-rate latcup and dose-rate upset. By transient radiation pulse in CMOS devices, dose-rate latchup is simulated in this paper.

  • PDF

Insights from an OKMC simulation of dose rate effects on the irradiated microstructure of RPV model alloys

  • Jianyang Li;Chonghong Zhang;Ignacio Martin-Bragado;Yitao Yang;Tieshan Wang
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.958-967
    • /
    • 2023
  • This work studies the defect features in a dilute FeMnNi alloy by an Object Kinetic Monte Carlo (OKMC) model based on the "grey-alloy" method. The dose rate effect is studied at 573 K in a wide range of dose rates from 10-8 to 10-4 displacement per atom (dpa)/s and demonstrates that the density of defect clusters rises while the average size of defect clusters decreases with increasing dose rate. However, the dose-rate effect decreases with increasing irradiation dose. The model considered two realistic mechanisms for producing <100>-type self-interstitial atom (SIA) loops and gave reasonable production ratios compared with experimental results. Our simulation shows that the proportion of <100>-type SIA loops could change obviously with the dose rate, influencing hardening prediction for various dose rates irradiation. We also investigated ways to compensate for the dose rate effect. The simulation results verified that about a 100 K temperature shift at a high dose rate of 1×10-4 dpa/s could produce similar irradiation microstructures to a lower dose rate of 1×10-7 dpa/s irradiation, including matrix defects and deduced solute migration events. The work brings new insight into the OKMC modeling and the dose rate effect of the Fe-based alloys.

Evaluating the Effects of Dose Rate on Dynamic Intensity-Modulated Radiation Therapy Quality Assurance

  • Kim, Kwon Hee;Back, Tae Seong;Chung, Eun Ji;Suh, Tae Suk;Sung, Wonmo
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.116-121
    • /
    • 2021
  • Purpose: To investigate the effects of dose rate on intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods: We performed gamma tests using portal dose image prediction and log files of a multileaf collimator. Thirty treatment plans were randomly selected for the IMRT QA plan, and three verification plans for each treatment plan were generated with different dose rates (200, 400, and 600 monitor units [MU]/min). These verification plans were delivered to an electronic portal imager attached to a Varian medical linear accelerator, which recorded and compared with the planned dose. Root-mean-square (RMS) error values of the log files were also compared. Results: With an increase in dose rate, the 2%/2-mm gamma passing rate decreased from 90.9% to 85.5%, indicating that a higher dose rate was associated with lower radiation delivery accuracy. Accordingly, the average RMS error value increased from 0.0170 to 0.0381 cm as dose rate increased. In contrast, the radiation delivery time reduced from 3.83 to 1.49 minutes as the dose rate increased from 200 to 600 MU/min. Conclusions: Our results indicated that radiation delivery accuracy was lower at higher dose rates; however, the accuracy was still clinically acceptable at dose rates of up to 600 MU/min.

재생과 증식에 기인하는 선량률 효과 (Dose-Rate Effects Generated from Repair and Regeneration)

  • 이본녕;조관호;막스 리차드;김재호
    • Radiation Oncology Journal
    • /
    • 제7권2호
    • /
    • pp.171-183
    • /
    • 1989
  • Roesch의 생존 방정식속에 세포증식으로 일어나는 생존증가를 가장 일반적 형식으로 포함시킨 식을 유도하고 이 식으로부터 저선량률 방사선에만 적용되는 동결과선량식 (Isoeffect formula)을 유도하였다. 이 저선량률식이 파라메터 하나로 결정해주는 총선량은 Paterson과 Green에 의하여 얻어진 실험 임상결과와 일치한다. 이 파라메터와 선량률 효과 사이의 관계의 의의를 논하였다. 또한 고선량률 분절(fractionation) 치료와 동저선량률 계속치료를 연락하는 동결과 선량식을 유도 사용하여, Ellis가 잰 실험결과와 비교하였다. 그 결과, Ellis와 Paterson이 쓴 'tolerance'의 표준이 $\alpha/\beta$의 비 4Gy에 해당하는 것임이 밝혀졌다. 그러므로 이들의 'tolerance'의 표준은 'early effect'에만 두고 본 것이 아님을 알 수 있다. 개념적인 면에서도, 아래와 같은 새로운 견해가 나올 수 있다. KHT sarcoma의 생존선도 (survival curve)에 선량률 효과가 보이지 않는 이유로 $\alpha/\beta$의 비가 큰 점을 들을 수 있다. 이것은 이 survival curve에 어께 (shoulder)가 보이지 않는 것으로도 증명이 된다. Pierquin이 선량률에 무관하게 head and neck tumor치료에 같은 총선량을 쓴 것을 정당화시킬 수 있다.

  • PDF

방사선관리구역의 공간선량률 교육을 위한 가상현실 시뮬레이터의 개발과 유용성 평가 (Development and Usefulness Evaluation of Virtual Reality Simulator for Education of Spatial Dose Rate in Radiation Controlled Area)

  • 서정민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권6호
    • /
    • pp.493-499
    • /
    • 2023
  • This study developed education contents of measuring spatial dose with virtual reality simulation and applied to students majoring radiological science. The virtual reality(VR) contents with measuring spatial dose rate in the radiation controlled area was developed based on the simulation from pilot study. In this simulation, the tube voltage and tube current can be set from 60 to 120 kVp in 10 kVp steps and 10 to 40 mAs in 10 mAs increments, and the distance from source can be set from 30 to 400 cm continuously. Iron and lead shields can be placed between the source and the detector, and shielding thickness can be set by 1 mm increments ranging from 1 to 20 mm. We surveyed to students for evaluating improvement of understanding spatial dose rate between before and after education by VR simulation. The survey was conducted with 5 questions(X-ray exposure factors, effects by distance from the source, effects from using shield, depending on material and thickness of shield, concept and measuring of spatial dose rate) and all answers showed significant improvement. Therefore, this VR simulation content will be well used in education for spatial dose rate and radiation safety environments.

THE SHORT-TERM EFFECTS OF LOW-DOSE-RATE RADIATION ON EL4 LYMPHOMA CELL

  • Bong, Jin-Jong;Kang, Yu-Mi;Shin, Suk-Chul;Choi, Moo-Hyun;Choi, Seung-Jin;Lee, Kyung-Mi;Kim, Hee-Sun
    • Journal of Radiation Protection and Research
    • /
    • 제37권2호
    • /
    • pp.56-62
    • /
    • 2012
  • To determine the biological effects of low-dose-rate radiation ($^{137}Cs$, 2.95 mGy/h) on EL4 lymphoma cells during 24 h, we investigated the expression of genes related to apoptosis, cell cycle arrest, DNA repair, iron transport, and ribonucleotide reductase. EL4 cells were continuously exposed to low-dose-rate radiation (total dose: 70.8 mGy) for 24 h. We analyzed cell proliferation and apoptosis by trypan blue exclusion and flow cytometry, gene expression by real-time PCR, and protein levels with the apoptosis ELISA kit. Apoptosis increased in the Low-dose-rate irradiated cells, but cell number did not differ between non- (Non-IR) and Low-dose-rate irradiated (LDR-IR) cells. In concordance with apoptotic rate, the transcriptional activity of ATM, p53, p21, and Parp was upregulated in the LDR-IR cells. Similarly, Phospho-p53 (Ser15), cleaved caspase 3 (Asp175), and cleaved Parp (Asp214) expression was upregulated in the LDR-IR cells. No difference was observed in the mRNA expression of DNA repair-related genes (Msh2, Msh3, Wrn, Lig4, Neil3, ERCC8, and ERCC6) between Non-IR and LDR-IR cells. Interestingly, the mRNA of Trfc was upregulated in the LDR-IR cells. Therefore, we suggest that short-term Low-dose-rate radiation activates apoptosis in EL4 lymphoma cells.

CHANGES IN BODY AND ORGAN WEIGHTS, HEMATOLOGICAL PARAMETERS, AND FREQUENCY OF MICRONUCLEI IN THE PERIPHERAL BLOOD ERYTHROCYTES OF ICR MICE EXPOSED TO LOW-DOSE-RATE $\gamma$-RADIATION

  • Kang, Yu-Mi;Shin, Suk-Chul;Jin, Young-Woo;Kim, Hee-Sun
    • Journal of Radiation Protection and Research
    • /
    • 제34권3호
    • /
    • pp.102-106
    • /
    • 2009
  • We exposed ICR mice to low-dose (0.2 Gy) and low-dose-rate (0.7 mGy/h) $\gamma$-radiation ($^{137}Cs$) in the Low-dose-rate Irradiation Facility at the Radiation Health Research Institute to evaluate systemic effects of low-dose radiation. We compared the body and organ weights, number of blood cells (white and red blood cells and platelets), levels of biochemical markers in serum, and frequency of micronuclei in polychromatic erythrocytes between low-dose irradiated and non-irradiated control mice. The ICR mice irradiated with total doses of 0.2 and 2 Gy showed no changes in body and organ weights, number of blood cells (white and red blood cells), or frequency of micronuclei in the polychromatic erythrocytes of peripheral blood. However, the number of platelets (P = 0.002) and the liver weight (P < 0.01) were significantly increased in mice exposed to 0.2 and 2 Gy, respectively. These results suggest that a low-dose-rate of 0.7 mGy/h does not induce systemic damage. This dose promotes hematopoiesis in the bone marrow microenvironment and the proliferation of liver cells. In the future, the molecular biological effects of lower doses and dose rates need to be evaluated.

백서 관상 혈류에 미치는 Phenylephrine 및 Clonidine 의 영향 (Influence of Phenylephrine and Clonidine on The Coronary Flow in Rats)

  • 김광호
    • Journal of Chest Surgery
    • /
    • 제23권6호
    • /
    • pp.1107-1117
    • /
    • 1990
  • The regulatory role of the post \ulcorner1-and \ulcorner2-adrenoceptors on cardiac function, particularly in coronary flow rate, was investigated in the isolated rat heart treated with 10-6 M propranolol. When introduced into the left atrium of the heart, phenylephrine[10-7-10-2 M] decreased coronary flow rate and increased mean coronary resistance in a dose related fashion, but did not affect heart rate. Methoxamine also elicited the increment of coronary resistance and the decrement of coronary flow rate, though the effects of methoxamine were weaker than those by phenylephrine. The effect of phenylephrine was inhibited by 1\ulcornerM prazosin and shifting the dose-response curve to the right. The effects of clonidine, a selective \ulcorner2-adrenoceptor agonist, were studied in the heart taken from reserpinized rats. Clonidine increased coronary resistance, decreased heart rate and coronary flow rate with a dose-dependent manner. These effects were abolished by 10-6 M yohimbine, a selective \ulcorner2-antagonist, and were not affected by 10-6M prazosin. Clonidine also decreased coronary flow and increased mean coronary resistance in electric paced heart. These effects were inhibited by rawoulscine, a selective ca-antagonist. These results indicate that the stimulation of both post \ulcorner1-and \ulcorner2-adrenoceptor causes coronary vasoconstiction. And it is inferred that this model of sympathomimetics-induced coronary vasospasm may provide a useful tool for investigating spasmolytic agents which are of benefit in the treatment of variant angina.

  • PDF

CMOS 0.18um 공정 단위소자의 방사선 영향 분석 (Analysis of Radiation Effects in CMOS 0.18um Process Unit Devices)

  • 정상훈;이남호;이민웅;조성익
    • 전기학회논문지
    • /
    • 제66권3호
    • /
    • pp.540-544
    • /
    • 2017
  • In this study, we analyzed the effects of TID(Total Ionizing Dese) and TREE(Transient Radiation Effects on Electronics) on nMOSFET and pMOSFET fabricated by 0.18um CMOS process. The size of nMOSFET and pMOSFET is 100um/1um(W/L). The TID test was conducted up to 1 Mrad(Si) with a gamma-ray(Co-60). During the TID test, the nMOSFET generated leakage current proportional to the applied dose, but that of the pMOSFET was remained in a steady state. The TREE test was conducted at TEST LINAC in Pohang Accelerator Laboratory with a maximum dose-rate of $3.16{\times}10^8rad(si)/s$. In that test nMOESFET generated a large amount of photocurrent at a maximum of $3.16{\times}10^8rad(si)/s$. Whereas, pMOSFETs showed high TREE immunity with a little amount of photocurrent at the same dose rate. Based on the results of this experiment, we will progress the research of the radiation hardening for CMOS unit devices.