• Title/Summary/Keyword: Dopant

Search Result 819, Processing Time 0.028 seconds

Refractive Index Control by Dopant for Thick Silica films Deposited by FHD (FHD법에 의해 증착된 실리카막의 도펀트 첨가에 의한 굴절률 제어)

  • 김용탁;서용곤;윤형도;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.589-593
    • /
    • 2003
  • Silica based Planar Lightwave Circuits (PLC) have been applied to various kinds of wave-guided optical passive devices. SiO$_2$ (buffer) and GeO$_2$-SiO$_2$ (core) thick films have been deposited by Flame Hydrolysis Deposition (FHD). The SiO$_2$ films were produced by the flame hydrolysis reaction of halide materials such as SiCl$_4$, POCl$_3$ and BCl$_3$ into an oxy-hydrogen torch. The P concentration increased from 2.0 to 2.8 at% on increasing the POCl$_3$/BCl$_3$ flow ratio. The refractive index increased from 1.4584 to 1.4605 on increasing the POC1$_3$/BC1$_3$ flow ratio from 0.6 to 2.6. The refractive index of GeO$_2$-SiO$_2$ films was controlled by the GeCl$_4$ flow rate. The refractive index increased from 1.4615 to 1.4809 on increasing the GeCl$_4$ flow rate from 30 to 120 sccm.

The Dielectrical Properties of $(1-x)(Sr_a.Pb_b.Ca_c)TiO_3-xB_i2O_3.TiO_2$ system affected by $Bi_2O_3.3TiO_2$ amounts and $MnO_2$ ($(1-x)(Sr_a.Pb_b.Ca_c)TiO_3-xB_i2O_3.TiO_2$계에서의 $Bi_2O_3.3TiO_2$$MnO_2$첨가에 따른 유전특성에 관한 연구)

  • 박상도;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.123-130
    • /
    • 1997
  • In this study, (Sr.Pb.Ca)TiO3-Bi2O3.3TiO2(SPCT) systems were investigated to develop a new material which has a high dielectric constant, a low dielectric loss and a small TCC(Temperature Coefficient of Capa-citance), and are suitable for high voltage applications as a function of the additions of Bi2O3.3TiO2 from 5 mol.% to 9 mol.%. The result obtained from our investigation showed that up to 6 mol.% Bi2O3.3TiO ad-dition the dielectric constant increased and it deteriorated at higher concentrations with increasing amount of the acicular grains. As a result of some dopants (SiO2, Nb2O3, MnO2) addition to SPCT, the specimens with MnO2 showed good dielectric properties. The dielectric constant decreased, but the TCC was improved with the addition of MnO2 from 0.15 wt.% to 0.45 wt. %.

  • PDF

Electrical Properties of ZnO-Bi2O3-Co3O4 Varistor (ZnO-Bi2O3-Co3O4 바리스터의 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.882-889
    • /
    • 2011
  • In this study, we have investigated the effects of Co doping on I-V curves, bulk trap levels and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. From I-V characteristics the nonlinear coefficient (a) and the grain boundary resistivity (${\rho}_{gb}$) decreased as 32${\rightarrow}$22 and 18.4${\rightarrow}0.6{\times}10^9{\Omega}cm$ with sintering temperature (900~1,300$^{\circ}C$), respectively. Admittance spectra and dielectric functions show two bulk traps of zinc interstitial, $Zn_i^{{\cdot}{\cdot}}$(0.16~0.18 eV) and oxygen vacancy, $V_o^{{\cdot}}$ (0.28~0.33 eV). The barrier of grain boundaries in ZBCo (ZnO-$Bi_2O_3-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.93 eV at the 460~580 K to 1.13 eV at the 620~700 K. It is revealed that Co dopant in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against the ambient temperature.

Analysis of a.c. Characteristics in ZnO-Bi2O3Cr2O3 Varistor using Dielectric Functions (유전함수를 이용한 ZnO-Bi2O3Cr2O3 바리스터의 a.c. 특성 분석)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.368-373
    • /
    • 2010
  • In this study, we have investigated the effects of Cr dopant on the bulk trap levels and grain boundary characteristics of $Bi_2O_3$-based ZnO (ZB) varistor using admittance spectroscopy and dielectric functions (such as $Z^*,\;Y^*,\;M^*,\;{\varepsilon}^*$, and $tan{\delta}$). Admittance spectra show more than two bulk traps of $Zn_i$ and $V_o$ probably in different ionization states in ZnO-$Bi_2O_3-Cr_2O_3$ (ZBCr) system. Three kinds of temperature-dependant activation energies ($E_{bt}'s$) were calculated as 0.11~0.14 eV of attractive coulombic center, 0.16~0.17 eV of $Zn_{\ddot{i}}$, and 0.33 eV of $V_o^{\cdot}$ as dominant bulk defects. The grain boundaries of ZBCr could be electrochemically divided into two types as a sensitive to ambient oxygen i.e. electrically active one and an oxygen-insensitive i.e. electrically inactive one. The grain boundaries were electrically single type under 460 K (equivalent circuit as parallel $R_{gb1}C_{gb1}$) but separated as double one ($R_{gb1}C_{gb1}-R_{gb2}C_{gb2}$) over 480 K. It is revealed that the dielectric functions are very useful tool to separate the overlapped bulk defect levels and to characterize the electrical properties of grain boundaries.

Analysis of Grain Boundary Phenomena in ZnO Varistor Using Dielectric Functions (유전함수를 이용한 ZnO 바리스터의 입계 특성 분석)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.178-178
    • /
    • 2008
  • ZnO 바리스터는 인가되는 전압에 따라 저항이 변하는 전압 의존형 저항체이며 각종 전기 전자 정보통신용 제품에 정전기(ESD) 대책용 소자로 폭 넓게 사용되는 전자 세라믹스 부품이다. 특별히 Bi-based ZnO 바리스터는 다양한 상(phase)으로 구성되어 있으며 그 입계의 전기적 특성은 소량 첨가되는 dopant의 종류에 따라 다양하게 변하는 것으로 알려져 있다. 본 연구에서는 Bi-based ZnO 바리스터 (ZnO-$Bi_2O_3$, ZnO-$Bi_2O_3-Mn_3O_4$)에서 각종 유전함수$(Z^*,M^*,\varepsilon^*,Y^*,tan{\delta})$를 이용하여 입계의 주파수-온도에 대한 특성을 살펴 보았다. 일반적인 ZnO 바리스터 제조법으로 시편을 제작하여 78K~800K 온도 범위에서 각종 유전함수를 이용하여 복소 평면도(complex plane plot)와 주파수 응답도(frequency explicit plot)의 방법으로 defect level과 입계 특성(활성화 에너지, 정전용량, 저항, 입계 안정성 등)에 대하여 고찰하였다. ZnO-$Bi_2O_3$(ZB)계와 ZnO-$Bi_2O_3-Mn_3O_4$(ZBM)계 모두 상온 이하의 온도에서 $Zn_i$$V_o$의 결함이 나타났으며, 이들의 결함 준위는 각 유전함수에 따라 다소 차이가 났다. 입계 특성으로 ZB계는 이상구간(560~660K)을 전후로 1.15 eV $\rightarrow$ 1.49 eV의 활성화 에너지의 변화가 나타났지만, ZBM계는 이러한 현상이 나타나지 않았다. 또한 입계 전위 장벽의 온도 안정성에 대해서는 Cole-Cole model을 적용하여 분포 파라미터 (distribution parameter; $\alpha$)를 구하여 고찰하였다. ZB계의 입계 안정성은 온도에 따라 불안정해 졌지만, ZBM계는 안정하였다.

  • PDF

Growth of Synthetic Emerald Single Crystal by Flux Method (Flux법에 의한 합성 에메랄드 단결정 육성)

  • Park, Sun-Min;Lee, Chul-Tae;Kim, Ho-Kun
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.34-42
    • /
    • 1996
  • Growth of synthetic emerald [($(BeO)_3(Al_{2-x}Cr_xO_3)(SiO_2)_6$] single crystals was carried out by flux method. In this study, the starting materials were prepared by stoichiometric mixing of BeO, $Al_2O_3$ and $SiO_2$ as reaching components. The conditions for the growth of synthetic emerald single crystals are as follows : temperature range ; $1150{\sim}900^{\circ}C$, cooling rate ; 2, 4, $10^{\circ}C/hr$, flux ; $Li_2CO_3$, $V_2O_5$, dopant ; $Cr_2O_3$. The sizes of $Cr_2O_3$emerald single crystals depending on 2, 4, $10^{\circ}C/hr$ cooling rates. The obtained emerald single crystal was characterized and the following results were obtained : lattice parameter : a=0.921nm, c=0.917nm, crystal system ; hexagonal, crystal size ; max. $0.80{\times}0.95mm^2(c{\times}m)$, orientation ; (1000), $m(10{\bar{1}}0)$.

  • PDF

Depletion region analysis of silicon substrate using finite element methods (유한요소법을 이용한 실리콘 기판에서의 공핍 영역 해석)

  • Byeon, Gi-Ryang;Hwang, Ho-Jeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • In this paper, new simple method for the calculation of depletion region under complex geometry and general purpose numerical simulator that could handle this were developed and applied in the analysis of SCM with nanoscale tip, which is a promising tool for high resolution dopant profiling. Our simple depletion region seeking algorithm alternatively switches material of elements to align ionized element boundary with contour of zero potential. To prove the validity of our method we examined whether our results satisfy the definition of depletion region and compared those with known values of un junction and MOS structure. By modeling of capacitance based on the shape of depletion region and potential distribution, we could calculate the CV curve and dC/dV curve between silicon substrate and nanoscale SCM tip.

The Electrical Characteristics of MOSFET having Deuterium implanted Gate Oxide (중수소 이온 주입된 게이트 산화막을 갖는 MOSFET의 전기적 특성)

  • Lee, Jae-Sung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.13-19
    • /
    • 2010
  • MOSFET with deuterium-incorporated gate oxide shows enhanced reliability compared to conventional MOSFET. We present an alternative process whereby deuterium is delivered to the location where the gate oxide reside by an implantation process. Deuterium ions were implanted using two different energies to account for the topography of the overlaying layers and placing the D peak at the top of gate oxide. A short anneal at forming gas was performed to remove the D-implantation damage. We have observed that deuterium ion implantation into the gate oxide region can successfully remove the interface states and the bulk defects. But the energy and the dose of the deuterium implant need to be optimized to maintain the Si substrates dopant activation, while generating deuterium bonds inside gate oxide. CV and IV characteristics studies also determined that the deuterium implant dose not degrade the transistor performance.

Thermal Transfer Pixel Patterning by Using an Infrared Lamp Source for Organic LED Display (유기 발광 소자 디스플레이를 위한 적외선 램프 소스를 활용한 열 전사 픽셀 패터닝)

  • Bae, Hyeong Woo;Jang, Youngchan;An, Myungchan;Park, Gyeongtae;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • This study proposes a pixel-patterning method for organic light-emitting diodes (OLEDs) based on thermal transfer. An infrared lamp was introduced as a heat source, and glass type donor element, which absorbs infrared and generates heat and then transfers the organic layer to the substrate, was designed to selectively sublimate the organic material. A 200 nm-thick layer of molybdenum (Mo) was used as the lightto-heat conversion (LTHC) layer, and a 300 nm-thick layer of patterned silicon dioxide (SiO2), featuring a low heat-transfer coefficient, was formed on top of the LTHC layer to selectively block heat transfer. To prevent the thermal oxidation and diffusion of the LTHC material, a 100 nm-thick layer of silicon nitride (SiNx) was coated on the material. The fabricated donor glass exhibited appropriate temperature-increment property until 249 ℃, which is enough to evaporate the organic materials. The alpha-step thickness profiler and X-ray reflection (XRR) analysis revealed that the thickness of the transferred film decreased with increase in film density. In the patterning test, we achieved a 100 ㎛-long line and dot pattern with a high transfer accuracy and a mean deviation of ± 4.49 ㎛. By using the thermal-transfer process, we also fabricated a red phosphorescent device to confirm that the emissive layer was transferred well without the separation of the host and the dopant owing to a difference in their evaporation temperatures. Consequently, its efficiency suffered a minor decline owing to the oxidation of the material caused by the poor vacuum pressure of the process chamber; however, it exhibited an identical color property.

Effects of Polyacrylic Acid Doping on Microstructure and Critical Current Density of $MgB_2$ Bulk ($MgB_2$ bulk의 미세구조와 임계전류밀도에 미치는 polyacrylic acid doping 효과)

  • Lee, S.M.;Hwang, S.M.;Lee, C.M.;Joo, J.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.11 no.2
    • /
    • pp.87-91
    • /
    • 2010
  • We fabricated the polyacrylic acid (PAA)-doped $MgB_2$ bulks and characterized their lattice parameters, actual C substitutions, microstructures, and critical properties. The boron (B) powder was mixed with PAA using N,N-dimethylformamide as solvent and then the solution was dried out at $200^{\circ}C$ and crushed. The C treated B powder and magnesium powder were mixed and compacted by uniaxial pressing at 500 MPa, followed by sintering at $900^{\circ}C$ for 1 h in high purity Ar atmosphere. We observed that the PAA doping increased the MgO amount but decreased the grain size, a-axis lattice constant, and critical temperature ($T_c$), which is indicative of the C substitution for B sites in $MgB_2$. In addition, the critical current density ($J_c$) at high magnetic field was significantly improved with increasing PAA addition: at 5 K and 6.6 T, the $J_c$ of 7 wt% PAA-doped sample was $6.39\;{\times}\;10^3\;A/cm^2$ which was approximately 6-fold higher than that of the pure sample ($1.04\;{\times}\;10^3\;A/cm^2$). This improvement was probably due to the C substitution and the refinement of grain size by PAA doping, suggesting that PAA is an effective dopant in improving $J_c$(B) performance of $MgB_2$.