Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.11.882

Electrical Properties of ZnO-Bi2O3-Co3O4 Varistor  

Hong, Youn-Woo (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology)
Shin, Hyo-Soon (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology)
Yeo, Dong-Hun (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology)
Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.11, 2011 , pp. 882-889 More about this Journal
Abstract
In this study, we have investigated the effects of Co doping on I-V curves, bulk trap levels and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. From I-V characteristics the nonlinear coefficient (a) and the grain boundary resistivity (${\rho}_{gb}$) decreased as 32${\rightarrow}$22 and 18.4${\rightarrow}0.6{\times}10^9{\Omega}cm$ with sintering temperature (900~1,300$^{\circ}C$), respectively. Admittance spectra and dielectric functions show two bulk traps of zinc interstitial, $Zn_i^{{\cdot}{\cdot}}$(0.16~0.18 eV) and oxygen vacancy, $V_o^{{\cdot}}$ (0.28~0.33 eV). The barrier of grain boundaries in ZBCo (ZnO-$Bi_2O_3-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.93 eV at the 460~580 K to 1.13 eV at the 620~700 K. It is revealed that Co dopant in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against the ambient temperature.
Keywords
Varistor; ZnO; $Bi_2O_3$; $Co_3O_4$; Defect; Dielectric function;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Y. W Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 949 (2009).
2 W. Cao and R. Gerhardt, Solid State Ionics, 42, 213 (1990).   DOI   ScienceOn
3 D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999).
4 T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990).   DOI
5 K. Eda, IEEE Elec. Insulation. Mag., 5, 28 (1989).
6 R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987).   DOI
7 Y. W. Hong, Bull. KIEEME, 24, 3 (2011).
8 F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990).   DOI
9 M. Andres-Verges and A. R. West, J. Electroceram., 1, 125 (1997).   DOI
10 Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 21, 738 (2008).
11 Y. W Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 368 (2010).
12 Y. W Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 942 (2010).
13 Y. W Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 936 (2010).
14 Y. W Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 941 (2009).
15 Y. W. Hong and J. H. Kim, Ceram. Int., 30, 1307 (2004).   DOI
16 H. R. Philipp, Materials Science Research, Tailoring Multiphase and Composite Ceramics (eds. R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham) (Prenum Press, New York/London, 1987) p. 481.
17 R. Gerhardt, J. Phys. Chem. Solids, 55, 1491 (1994).   DOI