• Title/Summary/Keyword: Dopamine D2 receptor

Search Result 132, Processing Time 0.027 seconds

Regulation of Genetic Aggression by Central Dopamine System - Plurality of Dopamine Receptor -

  • Lee, Soon-Chul
    • Archives of Pharmacal Research
    • /
    • v.14 no.2
    • /
    • pp.109-113
    • /
    • 1991
  • Two types of aggressive behavior were produced by selective breeding in ICR mimce. NC900 line mice exhibited high level of species-typical, isolation-induced aggression, conversely, NC100 line mice exhibited little aggression. The present study tested the hypothesis that these differences involved brain monoamine systems. Comparisons of microdissected samples from various brain regions showed that NC100 line mice had significantly lower concentrations of dopamine. DOPAC and HVA in the nucleus accumbens (NAB) and caudate nucleus (NCU) than NC900 line. Homogenate binding studies demonstrated that NC100 mice had significantly increased density of $D_1$ dopamine receptor, but not $D_2$ dopamine receptor in the caudate nucleus. These results support the hypothesis that central dopamine pathways play an important role in modulating the genetically selected differences in aggressive behavior, and of which intensity differs from TEX>$D_1$\;and\;$D_2$ dopamine receptors.

  • PDF

Direct and functional interaction between dopamine D2 receptor and ALY

  • Yang, Ji-Hye;Cheong, Da-Woon;Seo, Hyung-Ju;Kim, Moon-Soo;Kim, Kyeong-Man
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.270.1-270.1
    • /
    • 2002
  • The signaling pathway of D2 dopamine receptor was studied using yeaslt two-hybrid system.. The 3rd cytoplasmic loop of rat D2 dopamine receptor was used to screen the cDNA library of mouse brain. and ALY was found to interact with it. The interaction in the yeast was observed only with the 3rd cytoplasmic loop of D2 dopamine receptor but not with that of D3 or D4 dopamine receptor. The interaction between two proteins was also confirmed by GST pull-down assay. (omitted)

  • PDF

Dopamine Receptor Interacting Proteins (DRIPs) of Dopamine D1-like Receptors in the Central Nervous System

  • Wang, Min;Lee, Frank J.S.;Liu, Fang
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.149-157
    • /
    • 2008
  • Dopamine is a major neurotransmitter in the mammalian central nervous system (CNS) that regulates neuroendocrine functions, locomotor activity, cognition and emotion. The dopamine system has been extensively studied because dysfunction of this system is linked to various pathological conditions including Parkinson's disease, schizophrenia, Tourette's syndrome, and drug addiction. Accordingly, intense efforts to delineate the full complement of signaling pathways mediated by individual receptor subtypes have been pursued. Dopamine D1-like receptors are of particular interest because they are the most abundant dopamine receptors in CNS. Recent work suggests that dopamine signaling could be regulated via dopamine receptor interacting proteins (DRIPs). Unraveling these DRIPs involved in the dopamine system may provide a better understanding of the mechanisms underlying CNS disorders related to dopamine system dysfunction and may help identify novel therapeutic targets.

Role of Helix 8 in Dopamine Receptor Signaling

  • Yang, Han-Sol;Sun, Ningning;Zhao, Xiaodi;Kim, Hee Ryung;Park, Hyun-Ju;Kim, Kyeong-Man;Chung, Ka Young
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.514-521
    • /
    • 2019
  • G protein-coupled receptors (GPCRs) are membrane receptors whose agonist-induced dynamic conformational changes trigger heterotrimeric G protein activation, followed by GRK-mediated phosphorylation and arrestin-mediated desensitization. Cytosolic regions of GPCRs have been studied extensively because they are direct contact sites with G proteins, GRKs, and arrestins. Among various cytosolic regions, the role of helix 8 is least understood, although a few studies have suggested that it is involved in G protein activation, receptor localization, and/or internalization. In the present study, we investigated the role of helix 8 in dopamine receptor signaling focusing on dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R). D1R couples exclusively to Gs, whereas D2R couples exclusively to Gi. Bioinformatic analysis implied that the sequences of helix 8 may affect GPCR-G protein coupling selectivity; therefore, we evaluated if swapping helix 8 between D1R and D2R changed G protein selectivity. Our results suggest that helix 8 is not involved in D1R-Gs or D2R-Gi coupling selectivity. Instead, we observed that D1R with D2R helix 8 or D1R with an increased number of hydrophobic residues in helix 8 relative to wild-type showed diminished ${\beta}$-arrestin-mediated desensitization, resulting in increased Gs signaling.

Association between the Alleles of the Dopamine $D_1$ Receptor and Schizophrenia (정신분열증환자와 도파민 $D_1$ 수용체 대립유전자 연합)

  • Kim, Jeong Il;Lee, Min Soo;Kwak, Dong Il
    • Korean Journal of Biological Psychiatry
    • /
    • v.4 no.2
    • /
    • pp.218-224
    • /
    • 1997
  • The results regarding an association between the polymorphism sites in the dopamine $D_1$ receptor gene and schizophrenia compelled us to study the distribution of the polymorphism in Korean schizophrenia and controls. Eighty-eight schizophrenic patients and normal controls were examined by case-control study for distribution of the polymorphism of the dopamine $D_1$ receptor gene in Korean popualtion to minimize the effect of racial differencies in gene frequencies. The frequencies of the $B_1$ and $B_2$ in schizophrenic patients were 0.11 and 9.89, respectively. And 0.10 and 0.90 in normal control. Ther was no significant differences in the frequencies in the allele $B_1$ and $B_2$between schizophrenic patients and normal controls. The author present here the evidence of a lack of alleic association between the polymorphism of the dopamine $D_1$ receptor gene and Korean schizophrenic patients. The assumption that the dopamine $D_1$ receptor gene has a genetic role in the development of schizophrenia was not suppoorted by this case-control study.

  • PDF

Functional Regulation of Dopamine D3 Receptor through Interaction with PICK1

  • Zheng, Mei;Zhang, Xiaohan;Min, Chengchun;Choi, Bo-Gil;Oh, In-Joon;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.475-481
    • /
    • 2016
  • PICK1, a PDZ domain-containing protein, is known to increase the reuptake activities of dopamine transporters by increasing their expressions on the cell surface. Here, we report a direct and functional interaction between PICK1 and dopamine $D_3$ receptors ($D_3R$), which act as autoreceptors to negatively regulate dopaminergic neurons. PICK1 colocalized with both dopamine $D_2$ receptor ($D_2R$) and $D_3R$ in clusters but exerted different functional influences on them. The cell surface expression, agonist affinity, endocytosis, and signaling of $D_2R$ were unaffected by the coexpression of PICK1. On the other hand, the surface expression and tolerance of $D_3R$ were inhibited by the coexpression of PICK1. These findings show that PICK1 exerts multiple effects on $D_3R$ functions.

Effects of Renal Denervation and SCH 23390, Dopamine Dl Receptor Antagonist, on Diuretic Action of SKF 81297, Dopamine Dl Receptor Agonist, in Dog (Dopamine Dl Recptor 효능제인 SKF 81297의 이뇨작용에 대한 신장 신경 제거 및 Dopamine Dl Receptor차단제인 SCH 23390의 영향)

  • 고석태;정경희;임동윤
    • Biomolecules & Therapeutics
    • /
    • v.10 no.1
    • /
    • pp.50-58
    • /
    • 2002
  • lt had been reproted previously that (${\pm}$)6-chloro-7,8-dihydroxy-1-phenyl 2,3,4,5-tetra-hydro -lH-3benzazepine (SKF 81297), dopamine $D_1$ receptor agonist, produced diuresis by both Indirect action through central function and direct action being induced in kidney. This study was attempted in order to examine the diuresis mechanism of such SKF 81297 Diuretic action of SKF 81297 given into the vein or the carotid artery was not affected by renal denervation, whereas diuretic action of SKF 81297 administered into a renal artery was blocked completely by renal denervation, and then diuretic action of SKF 81297 injected into carotid artery was inhibited by SCH 23390, dopamine $D_1$ receptor antagonist, given into carotid artery. Above results suggest that indirect diuretic action of SKF 81297 elicites through central dopamine $D_1$ receptor and direct diuresis in kidney by influence of renal nerves.

Expression of Dopamine D2 Receptor in Response to Apomorphine Treatment in the Striatum of the Rat with Experimentally Induced Parkinsonism (파킨슨병 모형 흰쥐의 줄무늬체에서 Apomorphine 투여 방법에 따른 도파민 D2 수용체의 발현)

  • Choi, Seung Jin;Sung, Jae Hoon;Son, Byung Chul;Park, Choon Keun;Kwon, Sung Oh;Kim, Moon Chan;Lee, Sang Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.7
    • /
    • pp.868-876
    • /
    • 2000
  • Objective : Parkinsonian rat models have generally been characterized by unilateral destruction of both the nigrostriatal pathway and the mesolimbic pathway using the neurotoxin 6-hydroxydopamine. The induction of contraversive turning by apomorphine in these models is thought to reflect the stimulation of supersensitive dopamine D2 receptor or receptor-mediated mechanisms in denervated neostriatum. The present study was undertaken to investigate the expression of dopamine D2 receptor in denervated striatum according to modalities of apomorphine(dopamine agonist) treatment after creating a hemiparkinsonian rat model in which there is 6-hydroxydopamine induced destruction of the unilateral dopaminergic nigrostriatal pathway. Methods : After making complete lesion in left side substantia nigra pars compacta(SNpc) by stereotactic injection of 6-hydroxydopamine into medial and lateral areas of SNpc, and confirming successful animal model by apomorphine induced contraversive turning behavior without recovery and complete destruction of ipsilateral SNpc with tyrosine hydroxylase immunostaining in 7th day after operation, 15 rats of parkinsonian model were studied with or without administration of apomorphine at varying doses and durations. According to the modalities of apomorphine treatment for 4 days, these rats were divided into 3 groups, as not-treated group, intermittently treated group and constantly treated group. For investigating the extent of the expression of dopamine D2 receptor in denervated striatum, immunohistochemical staining by dopamine D2 receptor antibody and Western blot were performed. Results : In the D2 receptor antibody immunohistochemical staining, the mean number of positive stained neurons was highest in not-treated group($20.5{\pm}1.14$) of 3 groups. In constantly treated group, the mean number of positive stained neurons was less($3.9{\pm}1.79$) than intermittently treated group(p<0.05). The Western blotting with the D2 receptor antibody revealed that expression of receptors was also highest in not-treated group and less in constantiy treated group than intermittently treated group. Conclusion : Dopamine D2 receptors in denervated striatum of parkinsonian rat models, which were not treated with apomorphine, revealed to be most highly expressed. And, according to doses and durations of apomorphine administration, desensitization of the receptor was more apt to develop with constant treatment than intermittent treatment. In clinical setting, the authors believe that, in long-term treated parkinsonian patients, desensitization of dopamine receptors due to chronic dopaminergic stimulation seems to be partially related to mechanisms of drug tolerance.

  • PDF

EFFECTS OF ACUTE AND SUBACUTE ADMINISTRATION OF COCAINE ON DOPAMINERGIC SYSTEMS IN THE RAT STRIATUM

  • Lim, D.K.;Ho, I.K.
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.75-88
    • /
    • 1990
  • The characteristics of dopamine uptake, D-1 and D-2 receptors after acute and subacute cocaine administration were determind in striatum from WKY and SHR. Cocaine was administered either acutely (40 mg/kg, s.c.) or twice daily (20 mg/kg, s.c.) for 3 and 7 days in 9-wk old WKY and SHR. Rats were sacrificed 30 min, 2 or 24 h after the single injection and 18 h after the last administration to the subacutely treated group. The changes in dopamine uptake, dopamine uptake sites, D-1 and D-2 receptors were determined using $(^3H)$dopamine, $(^3H)$-GBR-12935, $(^3H)$SCH-23390 and $(^3H)$sulpiride, respectively. In acutely treated rats, significant increases in $V_{max}$of dopamine uptake were observed 30 min after the cocanine injection in both strains without changes in $K_m$ values. The in vitro $IC_{50}$for cocaine was significantly decreased 30 min in WKY and 2 h in SHR. However, that for in vitro GBR-12909 was significantly increased 30 min and 2 h in both strains. Also densities of $(^3H)$-GBR-12935 binding sites were significantly increased 30 min and 2 h without changes in their $K_d$. Significant increases in D-2 receptor density were observed 30 min, 2 or 24 h after acute injection in both strains without changes in their affinities. The density of D-1 receptor was significantly decreased 30 min after the injection in WKY, but not in SHR. In subacutely treated rats, a significant increase in $K_m$ of dopamine uptake was observed in 7-day treated SHR. The in vitro $IC_{50}$fot GBR-12909 was significantly increased in 3-day treated WKY. The density of D-1 receptors was significantly increased in 3- and 7-day treated WKY, but not in SHR. The affinity of both binding sites remained unchanged. The results suggest that cocanine administration alters dopamine uptake, characteristics of dopamine uptake sites and dopamine receptor binding characteristics in rat brain. Furthermore, D-1 and D-2 dopamine receptors appear to be differently regulated.

  • PDF

Effects of Dopamine Agonists on Primary Cultured Neurons from Various Brain Regions

  • Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.16-22
    • /
    • 1994
  • Using 2 to 4 day-old postnatal rats, primary brain cell cultures were made from various brain regions (substantia nigra, hippocampus, striatum, and nucleus accumbens). Whole-cell patch clamp technique was used for electrophysiological studies. Neurons cultured from substantia nigra were characterized more in detail to test whether these cultured neurons were appropriate for physiological studies. Immunocytochemical and electrophysiological properties of these cultured neurons agreed with those from other in vivo or in vitro studies suggesting that cultured neurons maintained normal cytological and physiological conditions. Modulation of ionic channels through dopamine receptors were studied from brain areas where dopamine plays important roles on brain functions. When neurons were clamped near resting membrane potential (-74mV), R(+), R(+)-SKF 38393, a specific D$_1$receptor agonist, activated cultured striatal neurons, and dopamine itself produced biphasic responses. Responses of cultured hippocampal neurons to dopamine agonists were kinds of mirror images to those from striatal neurons; D$_1$receptor agonists inhibited hippocampal neurons but quinpirole, a D$_2$receptor agonist, activated them. Neurons cultured from nucleus accumbens were inhibited by dopamine.

  • PDF