Browse > Article

Dopamine Receptor Interacting Proteins (DRIPs) of Dopamine D1-like Receptors in the Central Nervous System  

Wang, Min (Department of Neuroscience, Centre for Addiction and Mental Health)
Lee, Frank J.S. (Department of Neuroscience, Centre for Addiction and Mental Health)
Liu, Fang (Department of Neuroscience, Centre for Addiction and Mental Health)
Abstract
Dopamine is a major neurotransmitter in the mammalian central nervous system (CNS) that regulates neuroendocrine functions, locomotor activity, cognition and emotion. The dopamine system has been extensively studied because dysfunction of this system is linked to various pathological conditions including Parkinson's disease, schizophrenia, Tourette's syndrome, and drug addiction. Accordingly, intense efforts to delineate the full complement of signaling pathways mediated by individual receptor subtypes have been pursued. Dopamine D1-like receptors are of particular interest because they are the most abundant dopamine receptors in CNS. Recent work suggests that dopamine signaling could be regulated via dopamine receptor interacting proteins (DRIPs). Unraveling these DRIPs involved in the dopamine system may provide a better understanding of the mechanisms underlying CNS disorders related to dopamine system dysfunction and may help identify novel therapeutic targets.
Keywords
Dopamine; Dopamine D1-like Receptors; Dopamine Receptor-interacting Proteins (DRIPs); Neuropsychiatric Disease;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Aebersold, R., and Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422, 198-207   DOI   ScienceOn
2 Bai, M. (2004). Dimerization of G-protein-coupled receptors: roles in signal transduction. Cell Signal 16, 175-186   DOI   ScienceOn
3 Bergson, C., Levenson, R., Goldman-Rakic, P.S., and Lidow, M.S. (2003). Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling. Trends Pharmacol. Sci. 24, 486-492   DOI   ScienceOn
4 Bouvier, M. (2001). Oligomerization of G-protein-coupled transmitter receptors. Nat. Rev. Neurosci. 2, 274-286   DOI   ScienceOn
5 Chini, B., and Parenti, M. (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J. Mol. Endocrinol. 32, 325-338   DOI   ScienceOn
6 Conn, P.M., Ulloa-Aguirre, A., Ito, J., and Janovick, J.A. (2007). G protein-coupled receptor trafficking in health and disease: lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol. Rev. 59, 225-250   DOI   ScienceOn
7 Kim, E., and Sheng, M. (2004). PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5, 771-781   DOI   ScienceOn
8 Kroeger, K.M., Pfleger, K.D., and Eidne, K.A. (2003). G-protein coupled receptor oligomerization in neuroendocrine pathways. Front. Neuroendocrinol. 24, 254-278   DOI   ScienceOn
9 Lee, S.P., So, C.H., Rashid, A.J., Varghese, G., Cheng, R., Lanca, A.J., O'Dowd, B.F., and George, S.R. (2004). Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J. Biol. Chem. 279, 35671-35678   DOI   ScienceOn
10 Liu, F., Wan, Q., Pristupa, Z.B., Yu, X.M., Wang, Y.T., and Niznik, H.B. (2000). Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors. Nature 403, 274-280   DOI   ScienceOn
11 Mason, J.N., Kozell L.B., and Neve K.A. (2002). Regulation of dopamine D(1) receptor trafficking by protein kinase Adependent phosphorylation. Mol. Pharmacol. 61, 806-816   DOI   ScienceOn
12 Neve, K.A., Seamans, J.K., and Trantham-Davidson, H. (2004). Dopamine receptor signaling. J. Recept. Signal Transduct. Res. 24, 165-205   DOI   ScienceOn
13 Rocheville, M., Lange, D.C., Kumar, U., Patel, S.C., Patel, R.C., and Patel, Y.C. (2000). Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154-157   DOI   ScienceOn
14 Ng, G.Y., O'Dowd, B.F., Caron, M., Dennis, M., Brann, M.R., and George, S.R. (1994). Phosphorylation and palmitoylation of the human D2L dopamine receptor in Sf9 cells. J. Neurochem. 63, 1589-1595   DOI   ScienceOn
15 Pei, L., Lee, F.J., Moszczynska, A., Vukusic, B., and Liu, F. (2004). Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J. Neurosci. 24, 1149-1158   DOI   ScienceOn
16 Pippig, S., Andexinger, S., and Lohse, M.J. (1995). Sequestration and recycling of beta 2-adrenergic receptors permit receptor resensitization. Mol. Pharmacol. 47, 666-676
17 Solanto, M.V. (2002). Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research. Behav. Brain Res. 130, 65-71   DOI   ScienceOn
18 Swanton, E., High, S., and Woodman, P. (2003). Role of calnexin in the glycan-independent quality control of proteolipid protein. EMBO J. 22, 2948-2958   DOI   ScienceOn
19 Niethammer, M., Kim, E., and Sheng, M. (1996). Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membraneassociated guanylate kinases. J. Neurosci. 16, 2157-2163   DOI
20 Elmhurst, J.L., Xie, Z., O'Dowd, B.F., and George, S.R. (2000). The splice variant D3nf reduces ligand binding to the D3 dopamine receptor: evidence for heterooligomerization. Brain Res. Mol. Brain Res. 80, 63-74   DOI   ScienceOn
21 Radnikow, G., and Misgeld, U. (1998). Dopamine D1 receptors facilitate GABAA synaptic currents in the rat substantia nigra pars reticulata. J. Neurosci. 18, 2009-2016   DOI
22 Kong, M.M., Hasbi, A., Mattocks, M., Fan, T., O'Dowd, B.F., and George, S.R. (2007). Regulation of D1 dopamine receptor trafficking and signaling by caveolin-1. Mol. Pharmacol. 72, 1157-1170   DOI   ScienceOn
23 Bozzi, Y., and Borrelli, E. (2006). Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it? Trends Neurosci. 29, 167-174   DOI   ScienceOn
24 Bermak, J.C., Li, M., Bullock, C., Weingarten, P., and Zhou, Q.Y. (2002). Interaction of gamma-COP with a transport motif in the D1 receptor C-terminus. Eur. J. Cell Biol. 81, 77-85   DOI   ScienceOn
25 Dziedzicka-Wasylewska, M., Faron-Gorecka, A., Andrecka, J., Polit, A., Kusmider, M., and Wasylewski, Z. (2006). Fluorescence studies reveal heterodimerization of dopamine D1 and D2 receptors in the plasma membrane. Biochemistry 45, 8751-8759   DOI   ScienceOn
26 Schultz, W. (2002). Getting formal with dopamine and reward. Neuron 36, 241-263   DOI   ScienceOn
27 Barnard, E.A., Skolnick, P., Olsen, R.W., Mohler, H., Sieghart, W., Biggio, G., Braestrup, C., Bateson, A.N., and Langer, S.Z. (1998). International union of pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50, 291-313
28 Kong, M.M., Fan, T., Varghese, G., O'Dowd, B.F., and George, S.R. (2006). Agonist-induced cell surface trafficking of an intracellularly sequestered D1 dopamine receptor homooligomer. Mol. Pharmacol. 70, 78-89
29 Kornau, H.C., Schenker, L.T., Kennedy, M.B., and Seeburg, P.H. (1995). Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737-1740   DOI
30 Kim, O.J., Gardner, B.R., Williams, D.B., Marinec, P.S., Cabrera, D.M., Peters, J.D., Mak, C.C., Kim, K.M., and Sibley, D.R. (2004). The role of phosphorylation in D1 dopamine receptor desensitization: evidence for a novel mechanism of arrestin association. J. Biol. Chem. 279, 7999-8010   DOI   ScienceOn
31 Macey, T.A., Liu, Y., Gurevich, V.V., and Neve, K.A. (2005). Dopamine D1 receptor interaction with arrestin3 in neostriatal neurons. J. Neurochem. 93, 128-134   DOI   ScienceOn
32 Bermak, J.C., Li, M., Bullock, C., and Zhou, Q.Y. (2001). Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat. Cell Biol. 3, 492-498   DOI   ScienceOn
33 Agnati, L.F., Fuxe, K., Benfenati, F., Celani, M.F., Battistini, N., Mutt, V., Cavicchioli, L., Galli, G., and Hokfelt, T. (1983). Differential modulation by CCK-8 and CCK-4 of 3H spiperone binding sites linked to dopamine and 5-hydroxytryptamine receptors in the brain of the rat. Neurosci. Lett 35, 179-183   DOI   ScienceOn
34 Gu, W.H., Yang, S., Shi, W.X., Jin, G.Z., and Zhen, X.C. (2007). Requirement of PSD-95 for dopamine D1 receptor modulating glutamate NR1a/NR2B receptor function. Acta Pharmacol. Sin. 28, 756-762   DOI   ScienceOn
35 Heydorn, A., Sondergaard, B.P., Hadrup, N., Holst, B., Haft, C.R., and Schwartz, T.W. (2004). Distinct in vitro interaction pattern of dopamine receptor subtypes with adaptor proteins involved in post-endocytotic receptor targeting. FEBS Lett. 556, 276-280   DOI   ScienceOn
36 Rapacciuolo, A., Suvarna, S., Barki-Harrington, L., Luttrell, L.M., Cong, M., Lefkowitz, R.J., and Rockman, H.A. (2003). Protein kinase A and G protein-coupled receptor kinase phosphorylation mediates beta-1 adrenergic receptor endocytosis through different pathways. J. Biol. Chem. 278, 35403-35411   DOI   ScienceOn
37 Volkow, N.D., Fowler, J.S., and Wang, G.J. (2002). Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behav. Pharmacol. 13, 355-366   DOI   ScienceOn
38 Breitwieser, G.E. (2004). G protein-coupled receptor oligomerization: implications for G protein activation and cell signaling. Circ. Res. 94, 17-27   DOI   ScienceOn
39 Choi, D.W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623-634   DOI   ScienceOn
40 So, C.H., Verma, V., O'Dowd, B.F., and George, S.R. (2007). Desensitization of the dopamine D1 and D2 receptor heterooligomer mediated calcium signal by agonist occupancy of either receptor. Mol. Pharmacol. 72, 450-462   DOI   ScienceOn
41 Goldman-Rakic, P.S., Muly, E.C. 3rd., and Williams, G.V. (2000). D(1) receptors in prefrontal cells and circuits. Brain Res. Brain Res. Rev. 31, 295-301   DOI   ScienceOn
42 Scarselli, M., Novi, F., Schallmach, E., Lin, R., Baragli, A., Colzi, A., Griffon, N., Corsini, G.U., Sokoloff, P., Levenson, R., et al. (2001). D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J. Biol. Chem. 276, 30308-30314   DOI   ScienceOn
43 Nimchinsky, E.A., Hof, P.R., Janssen, W.G., Morrison, J.H., and Schmauss, C. (1997). Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J. Biol. Chem. 272, 29229-29237   DOI   ScienceOn
44 Yan, Z., and Surmeier, D.J. (1997). D5 dopamine receptors enhance Zn2+-sensitive GABA(A) currents in striatal cholinergic interneurons through a PKA/PP1 cascade. Neuron 19, 1115-1126   DOI   ScienceOn
45 Undie, A.S., Weinstock, J., Sarau, H.M., and Friedman, E. (1994). Evidence for a distinct D1-like dopamine receptor that couples to activation of phosphoinositide metabolism in brain. J. Neurochem. 62, 2045-2048   DOI   ScienceOn
46 Goldman-Rakic, P.S. (1998). The cortical dopamine system: role in memory and cognition. Adv. Pharmacol. 42, 707-711
47 Li, Z., Benard, O., and Margolskee, R.F. (2006). Ggamma13 interacts with PDZ domain-containing proteins. J. Biol. Chem. 281, 11066-11073   DOI   ScienceOn
48 Roseberry, A.G., and Hosey, M.M. (2001). Internalization of the M2 muscarinic acetylcholine receptor proceeds through an atypical pathway in HEK293 cells that is independent of clathrin and caveolae. J. Cell Sci. 114(Pt 4), 739-746
49 Smart, T.G. (1997). Regulation of excitatory and inhibitory neurotransmitter- gated ion channels by protein phosphorylation. Curr. Opin. Neurobiol. 7, 358-367   DOI   ScienceOn
50 Lee, F.J., and Liu, F. (2004). Direct interactions between NMDA and D1 receptors: a tale of tails. Biochem. Soc. Trans. 32(Pt 6), 1032-1036   DOI   ScienceOn
51 Scott, L., Zelenin, S., Malmersjo, S., Kowalewski, J.M., Markus, E.Z., Nairn, A.C., Greengard, P., Brismar, H., and Aperia, A. (2006). Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. Proc. Natl. Acad. Sci. USA 103, 762-767
52 Zeng, C., Wang, Z., Li, H., Yu, P., Zheng, S., Wu, L., Asico, L.D., Hopfer, U., Eisner, G.M., Felder, R.A., et al. (2006). D3 dopamine receptor directly interacts with D1 dopamine receptor in immortalized renal proximal tubule cells. Hypertension 47, 573-579   DOI   ScienceOn
53 Karpa, K.D., Lin, R., Kabbani, N., and Levenson, R. (2000). The dopamine D3 receptor interacts with itself and the truncated D3 splice variant d3nf: D3-D3nf interaction causes mislocalization of D3 receptors. Mol. Pharmacol. 58, 677-683   DOI
54 Lavine, N., Ethier, N., Oak, J.N., Pei, L., Liu, F., Trieu, P., Rebois, R.V., Bouvier, M., Hebert, T.E., and Van Tol, H.H. (2002). G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J. Biol. Chem. 277, 46010-46019   DOI   ScienceOn
55 Luttrell, L.M., Roudabush, F.L., Choy, E.W., Miller, W.E., Field, M.E., Pierce, K.L., and Lefkowitz, R.J. (2001). Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc. Natl. Acad. Sci. USA 98, 2449-2454
56 Ng, G.Y., George, S.R., Zastawny, R.L., Caron, M., Bouvier, M., Dennis, M., and O'Dowd, B.F. (1993). Human serotonin1B receptor expression in Sf9 cells: phosphorylation, palmitoylation, and adenylyl cyclase inhibition. Biochemistry 32, 11727-11733   DOI   ScienceOn
57 Kanda, T., Jackson, M.J., Smith, L.A., Pearce, R.K., Nakamura, J., Kase, H., Kuwana, Y., and Jenner, P. (1998). Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann. Neurol. 43, 507-513   DOI   ScienceOn
58 Molinari, M., Eriksson, K.K., Calanca, V., Galli, C., Cresswell P., Michalak M., and Helenius, A. (2004). Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol. Cell 13, 125-135   DOI   ScienceOn
59 Rashid, A.J., So, C.H., Kong, M.M., Furtak, T., El-Ghundi, M., Cheng, R., O'Dowd, B.F., and George, S.R. (2007) D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc. Natl. Acad. Sci. USA 104, 654-659
60 Zhang, J., Vinuela, A., Neely, M.H., Hallett, P.J., Grant, S.G., Miller, G.M., Isacson, O., Caron, M.G., and Yao, W.D. (2007). Inhibition of the dopamine D1 receptor signaling by PSD-95. J. Biol. Chem. 282, 15778-15789   DOI   ScienceOn
61 Hillion, J., Canals, M., Torvinen, M., Casado, V., Scott, R., Terasmaa, A., Hansson, A., Watson, S., Olah, M.E., Mallol, J., et al. (2002). Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J. Biol. Chem. 277, 18091-18097   DOI   ScienceOn
62 Gines, S., Hillion, J., Torvinen, M., Le Crom, S., Casado, V., Canela, E.I., Rondin, S., Lew, J.Y., Watson, S., Zoli, M., et al. (2000). Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc. Natl. Acad. Sci. USA 97, 8606-8611
63 So, C.H., Varghese, G., Curley, K.J., Kong, M.M., Alijaniaram, M., Ji, X., Nguyen, T., O'Dowd, B.F., and George, S.R. (2005). D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. Mol. Pharmacol. 68, 568-578
64 Fiorentini, C., Gardoni, F., Spano, P., Di Luca, M., and Missale, C. (2003). Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate Nmethyl-D-aspartate receptors. J. Biol. Chem. 278, 20196-20202   DOI   ScienceOn
65 Kim, O.J., Ariano, M.A., Lazzarini, R.A., Levine, M.S., and Sibley, D.R. (2002). Neurofilament-M interacts with the D1 dopamine receptor to regulate cell surface expression and desensitization. J. Neurosci. 22, 5920-5930   DOI
66 Macdonald, R.L., and Olsen, R.W. (1994). GABAA receptor channels. Annu. Rev. Neurosci. 17, 569-602   DOI   ScienceOn
67 Scott, L., Kruse, M.S., Forssberg, H., Brismar, H., Greengard, P., and Aperia, A. (2002). Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation. Proc. Natl. Acad. Sci. USA 99, 1661-1664
68 Tsao, P., Cao, T., and von Zastrow, M. (2001). Role of endocytosis in mediating downregulation of G-protein-coupled receptors. Trends Pharmacol. Sci. 22, 91-96
69 Zoli, M., Agnati, L.F., Hedlund, P.B., Li, X.M., Ferre, S., and Fuxe, K. (1993). Receptor-receptor interactions as an integrative mechanism in nerve cells. Mol. Neurobiol. 7, 293-334   DOI
70 Lee, F.J., Xue, S., Pei, L., Vukusic, B., Chery, N., Wang, Y., Wang, Y.T., Niznik, H.B., Yu, X.M., and Liu, F. (2002). Dual regulation of NMDA receptor functions by direct proteinprotein interactions with the dopamine D1 receptor. Cell 111, 219-230   DOI   ScienceOn
71 O'Dowd, B.F., Ji, X., Alijaniaram, M., Rajaram, R.D., Kong, M.M., Rashid, A., Nguyen, T., and George, S.R. (2005). Dopamine receptor oligomerization visualized in living cells. J. Biol. Chem. 280, 37225-37235   DOI   ScienceOn
72 Poisbeau, P., Cheney, M.C., Browning, M.D., and Mody, I. (1999). Modulation of synaptic GABAA receptor function by PKA and PKC in adult hippocampal neurons. J. Neurosci. 19, 674-683   DOI
73 Ferre, S., Fredholm, B.B., Morelli, M., Popoli, P., and Fuxe, K. (1997). Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci. 20, 482-487   DOI   ScienceOn
74 Greengard, P. (2001). The neurobiology of slow synaptic transmission. Science 294, 1024-1030   DOI   ScienceOn
75 Lee, S.P., O'Dowd, B.F., Ng, G.Y., Varghese, G., Akil, H., Mansour, A., Nguyen, T., and George, S.R. (2000). Inhibition of cell surface expression by mutant receptors demonstrates that D2 dopamine receptors exist as oligomers in the cell. Mol. Pharmacol. 58, 120-128   DOI
76 Rimondini, R., Ferre, S., Ogren, S.O., and Fuxe, K. (1997). Adenosine A2A agonists: a potential new type of atypical antipsychotic. Neuropsychopharmacology 17, 82-91   DOI   ScienceOn
77 Hammond, C., Braakman, I., and Helenius, A. (1994). Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 91, 913-917