• Title/Summary/Keyword: Dixon's theorem

Search Result 19, Processing Time 0.016 seconds

SOME PRODUCT FORMULAS OF THE GENERALIZED HYPERGEOMETRIC SERIES

  • Cho, Young-Joon;Seo, Tae-Young;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.4
    • /
    • pp.843-850
    • /
    • 1999
  • The object of this paper is to give certain classes of pre-sumably new product formulas involving the generalized hypergeo-metric series by modifying the elementary method suggested by Bai-ley.

  • PDF

ANOTHER METHOD FOR PADMANABHAM'S TRANSFORMATION FORMULA FOR EXTON'S TRIPLE HYPERGEOMETRIC SERIES X8

  • Kim, Yong-Sup;Rathie, Arjun Kumar;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.517-521
    • /
    • 2009
  • The object of this note is to derive Padmanabham's transformation formula for Exton's triple hypergeometric series $X_8$ by using a different method from that of Padmanabham's. An interesting special case is also pointed out.

ON PREECE'S IDENTITY AND OTHER CONTIGUOUS RESULTS

  • CHOI, JUNE-SANG;RATHIE ARJUN K.;BHOJAK BHARTI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.169-178
    • /
    • 2005
  • Five results closely related to the well-known Preece's identity obtained earlier by Choi and Rathie will be derived here by using some known hypergeometric identities. In addition to this, the identities obtained earlier by Choi and Rathie have also been written in a compact form.

NEW LAPLACE TRANSFORMS FOR THE GENERALIZED HYPERGEOMETRIC FUNCTION 2F2

  • KIM, YONG SUP;RATHIE, ARJUN K.;LEE, CHANG HYUN
    • Honam Mathematical Journal
    • /
    • v.37 no.2
    • /
    • pp.245-252
    • /
    • 2015
  • This paper is in continuation of the paper very recently published [New Laplace transforms of Kummer's confluent hypergeometric functions, Math. Comp. Modelling, 55 (2012), 1068-1071]. In this paper, our main objective is to show one can obtain so far unknown Laplace transforms of three rather general cases of generalized hypergeometric function $_2F_2(x)$ by employing generalized Watson's, Dixon's and Whipple's summation theorems for the series $_3F_2$ obtained earlier in a series of three research papers by Lavoie et al. [5, 6, 7]. The results established in this paper may be useful in theoretical physics, engineering and mathematics.

REMARKS ON A SUMMATION FORMULA FOR THREE-VARIABLES HYPERGEOMETRIC FUNCTION $X_8$ AND CERTAIN HYPERGEOMETRIC TRANSFORMATIONS

  • Choi, June-Sang;Rathie, Arjun K.;Harsh, H.
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.481-486
    • /
    • 2009
  • The first object of this note is to show that a summation formula due to Padmanabham for three-variables hypergeometric function $X_8$ introduced by Exton can be proved in a different (from Padmanabham's and his observation) yet, in a sense, conventional method, which has been employed in obtaining a variety of identities associated with hypergeometric series. The second purpose is to point out that one of two seemingly new hypergeometric identities due to Exton was already recorded and the other one is easily derivable from the first one. A corrected and a little more compact form of a general transform involving hypergeometric functions due to Exton is also given.

ON THE REDUCIBILITY OF KAMPÉ DE FÉRIET FUNCTION

  • Choi, Junesang;Rathie, Arjun K.
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.345-355
    • /
    • 2014
  • The main objective of this paper is to obtain a formula containing eleven interesting results for the reducibility of Kamp$\acute{e}$ de F$\acute{e}$riet function. The results are derived with the help of two general results for the series $_2F_1(2)$ very recently presented by Kim et al. Well known Kummer's second theorem and its contiguous results proved earlier by Rathie and Nagar, and Kim et al. follow special cases of our main findings.

CERTAIN NEW GENERATING RELATIONS FOR PRODUCTS OF TWO LAGUERRE POLYNOMIALS

  • CHOI, JUNESANG;RATHIE, ARJUN KUMAR
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.191-200
    • /
    • 2015
  • Generating functions play an important role in the investigation of various useful properties of the sequences which they generate. Exton [13] presented a very general double generating relation involving products of two Laguerre polynomials. Motivated essentially by Exton's derivation [13], the authors aim to show how one can obtain nineteen new generating relations associated with products of two Laguerre polynomials in the form of a single result. We also consider some interesting and potentially useful special cases of our main findings.

TWO GENERAL HYPERGEOMETRIC TRANSFORMATION FORMULAS

  • Choi, Junesang;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.519-526
    • /
    • 2014
  • A large number of summation and transformation formulas involving (generalized) hypergeometric functions have been developed by many authors. Here we aim at establishing two (presumably) new general hypergeometric transformations. The results are derived by manipulating the involved series in an elementary way with the aid of certain hypergeometric summation theorems obtained earlier by Rakha and Rathie. Relevant connections of certain special cases of our main results with several known identities are also pointed out.